McGraw Hill Integrated II, 2012
MH
McGraw Hill Integrated II, 2012 View details
4. Trigonometry
Continue to next subchapter

Exercise 24 Page 656

Draw and label the side lengths of a 45^(∘)-45^(∘)-90^(∘) triangle.

sqrt(2)/2 or approximately 0.71

Practice makes perfect
Let's begin with drawing a 45^(∘)-45^(∘)-90^(∘) triangle. If we call the legs of this right isosceles triangle x, then the hypotenuse is xsqrt(2).
In our exercise we are asked to evaluate the sine of 45^(∘). Recall that the sine of ∠ A is the ratio of the length of the leg opposite ∠ A to the length of the hypotenuse. Using this definition, we can write the appropriate ratio for 45^(∘).
sin 45^(∘)=x/xsqrt(2)
sin 45^(∘)=1/sqrt(2)
Simplify right-hand side
sin 45^(∘)=1*sqrt(2)/sqrt(2)*sqrt(2)
sin 45^(∘)=1*sqrt(2)/(sqrt(2))^2
sin 45^(∘)=sqrt(2)/(sqrt(2))^2
sin 45^(∘)=sqrt(2)/2
sin 45^(∘)=0.7071...
sin 45^(∘)≈ 0.71
The sine of 45^(∘) is sqrt(2)2 or approximately 0.71.