Sign In
b=26
c=6
d=2
(-20, -377), (-5,-2), (-1,22), (15,-202) Because there are three coefficients, we should write three equations to find the coefficients. Let's use the last three points to write these equations. We will substitute them in the general form of the parabola equation.
Point | Substitution | Equation |
---|---|---|
( -5, -2) | -2=a( -5)^2+b( -5)+c | 25a-5b+c=-2 |
( -1, 22) | 22=a( -1)^2+b( -1)+c | a-b+c=22 |
( 15, -202) | -202=a( 15)^2+b( 15)+c | 225a-15b+c=-202 |
(I), (III): a= b-c+22
(I): Distribute 25
(III): Distribute 225
(I), (III): Add and subtract terms
(I): LHS-550=RHS-550
(III): LHS-4950=RHS-4950
(I): LHS * 10.5=RHS* 10.5
(III): Subtract (I)
(III): -(b-a)=a-b
(III): Add and subtract terms
(III): .LHS /28.=.RHS /28.
(I): c= 23
(II): b= 0, c= 23
(II): Add and subtract terms
Point | y=- x^2+23 | Unknown |
---|---|---|
( c, -13) | -13=- ( c)^2+23 | c=6 |
( 5, a-24) | a-24=- ( 5)^2+23 | a=22 |
( 7, - b) | - b=- ( 7)^2+23 | b=26 |
x= d-1, y= 22
(a-b)^2=a^2-2ab+b^2
-(b-a)=a-b
Subtract term
LHS+d^2=RHS+d^2
LHS-2d=RHS-2d
LHS-22=RHS-22
Factor out d
Zero Property of Multiplication
(II): LHS+2=RHS+2
d | (d-1,22) | Point |
---|---|---|
0 | ( 0-1,22) | (-1,22) |
2 | ( 2-1,22) | (1,22) |
Because the point (-1,22) is already on the table, the value of d can only be 2.
a= -1, b= 0
Multiply
Put minus sign in front of fraction
Calculate quotient