Sign In
(- 1, - 1)
(36,16)
In this system of equations, at least one of the variables has a coefficient of 1. This means that we can approach its solution with the Equal Values Method. When solving a system of equations using this system, there are four steps.
(II):y= 2x+1
(II): LHS+3x=RHS+3x
(II): LHS-1=RHS-1
(II): .LHS /5.=.RHS /5.
(II): Simplify quotient
(II): Calculate quotient
(I):x= - 1
(I): a(- b)=- a * b
(I): Add terms
(I), (II): x= - 1, y= - 1
(I): a(- b)=- a * b
(II): - a(- b)=a* b
(I), (II): Add and subtract terms
(II):y= 1/3x+4
(II): LHS-1/3x=RHS-1/3x
(II): a/b=a * 3/b * 3
(II): a/b=a * 2/b * 2
(II): Multiply
(II): Factor out x
(II): Subtract fractions
(II): Subtract term
(II): LHS+2=RHS+2
(II): LHS * 6=RHS* 6
(II): 6 * a/6= a
(II): Multiply
(II): Rearrange equation
(I):x= 36
(I): 1/b* a = a/b
(I): Calculate quotient
(I): Add terms
(I), (II): x= 36, y= 16
(I), (II): 1/b* a = a/b
(I), (II): Calculate quotient
(I), (II): Add and subtract terms