2. Section 9.2
Sign In
The domain of the square root function excludes negative values because the square root of a negative number is not a real number.
Table:
x | sqrt(x) | y |
---|---|---|
- 1 | sqrt(- 1-2)=sqrt(- 3) | Not a real number |
0 | sqrt(0-2)=sqrt(- 2) | Not a real number |
1 | sqrt(1-2)=sqrt(- 1) | Not a real number |
2 | sqrt(2-2)=sqrt(0) | 0 |
3 | sqrt(3-2)=sqrt(1) | 1 |
4 | sqrt(4-2)=sqrt(2) | ≈ 1.41 |
5 | sqrt(5-2)=sqrt(3) | ≈ 1.73 |
6 | sqrt(6-2)=sqrt(4) | 2 |
7 | sqrt(7-2)=sqrt(5) | ≈ 2.24 |
8 | sqrt(8-2)=sqrt(6) | ≈ 2.45 |
9 | sqrt(9-2)=sqrt(7) | ≈ 2.65 |
10 | sqrt(10-2)=sqrt(8) | ≈ 2.83 |
Graph:
We want to create a table for the rule y=sqrt(x-2) and graph this rule. Let's do these things one at a time.
With this in mind, let's construct the table! We can use a calculator to help us find the roots.
x | sqrt(x) | y |
---|---|---|
- 1 | sqrt(- 1-2)=sqrt(- 3) | Not a real number |
0 | sqrt(0-2)=sqrt(- 2) | Not a real number |
1 | sqrt(1-2)=sqrt(- 1) | Not a real number |
2 | sqrt(2-2)=sqrt(0) | 0 |
3 | sqrt(3-2)=sqrt(1) | 1 |
4 | sqrt(4-2)=sqrt(2) | ≈ 1.41 |
5 | sqrt(5-2)=sqrt(3) | ≈ 1.73 |
6 | sqrt(6-2)=sqrt(4) | 2 |
7 | sqrt(7-2)=sqrt(5) | ≈ 2.24 |
8 | sqrt(8-2)=sqrt(6) | ≈ 2.45 |
9 | sqrt(9-2)=sqrt(7) | ≈ 2.65 |
10 | sqrt(10-2)=sqrt(8) | ≈ 2.83 |
Let's use our table to help us graph the given rule. The first step is to list the ordered pairs (x,y) which represent the rule.
x | y | (x,y) |
---|---|---|
2 | 0 | (2,0) |
3 | 1 | (3,1) |
4 | ≈ 1.41 | (4,1.41) |
5 | ≈ 1.73 | (5,1.73) |
6 | 2 | (6,2) |
7 | ≈ 2.24 | (7,2.24) |
8 | ≈ 2.45 | (8, 2.45) |
9 | ≈ 2.65 | (9, 2.65) |
10 | ≈ 2.83 | (10, 2.83) |
Next, let's first plot the points as (x,y) coordinate pairs.
Finally, we can connect those points with a smooth line to create the graph for the given rule. Remember that the domain is all real numbers greater than or equal to 2.