Sign In
Consider using the Pythagorean Identity sin ^2 θ + cos^2 θ = 1.
cos θ = 2sqrt(2)/3, tan θ = sqrt(2)/4, cot θ = 2sqrt(2), csc θ = 3, sec θ =3 sqrt(2)/4
We want to find the values of the other five trigonometric functions of θ given that sin θ = 13 and 0 < θ < π2.
sin θ= 1/3
LHS- ( 1/3 )^2=RHS- ( 1/3 )^2
In this quadrant, the cosine of θ is positive. Therefore, we will only keep the positive solution. cos θ = 2sqrt(2)/3
Knowing that sin θ = 13 and cos θ = 2 sqrt(2)3, we are allowed to find the four remaining trigonometric ratios. Remember to simplify fractions and rationalize denominators, if needed.
Function | Substitute | Simplify |
---|---|---|
tan θ=sin θ/cos θ | tan θ=13/2sqrt(2)3 | tan θ = sqrt(2)/4 |
cot θ=cos θ/sin θ | cot θ=2sqrt(2)3/13 | cot θ=2sqrt(2) |
csc θ=1/sin θ | csc θ=1/13 | csc θ=3 |
sec θ=1/cos θ | sec θ=1/2sqrt(2)3 | sec θ=3sqrt(2)/4 |
a/b=a * 3/b * 3
a/b=a * sqrt(2)/b * sqrt(2)
a* a=a^2
( sqrt(a) )^2 = a
Multiply
a/b=a * 3/b * 3
a/3* 3 = a
a/b=a * sqrt(2)/b * sqrt(2)
a* a=a^2
( sqrt(a) )^2 = a
Multiply