Sign In
Consider using the Pythagorean Identity sin ^2 θ + cos^2 θ = 1.
cos θ = - sqrt(51)/10, tan θ = 7sqrt(51)/51, cot θ = sqrt(51)/7, csc θ = - 10/7, sec θ = - 10sqrt(51)/51
We want to find the values of the other five trigonometric functions of θ given that sin θ = - 710 and π < θ < 3π2.
sin θ= - 7/10
(- a)^2=a^2
LHS- ( 7/10 )^2=RHS- ( 7/10 )^2
In this quadrant, the cosine of θ is negative. Therefore, we will only keep the negative solution. cos θ = - sqrt(51)/10
Knowing that sin θ = - 710 and cos θ = - sqrt(51)10, we are allowed to find the four remaining trigonometric ratios. Remember to simplify fractions and rationalize denominators, if needed.
Function | Substitute | Simplify |
---|---|---|
tan θ=sin θ/cos θ | tan θ=- 710/- sqrt(51)10 | tan θ = 7sqrt(51)/51 |
cot θ=cos θ/sin θ | cot θ=- sqrt(51)10/- 710 | cot θ=sqrt(51)/7 |
csc θ=1/sin θ | csc θ=1/- 710 | csc θ=- 10/7 |
sec θ=1/cos θ | sec θ=1/- sqrt(51)10 | sec θ=- 10 sqrt(51)/51 |
a/b=a * 10/b * 10
- a/- b=a/b
a/b=a * sqrt(51)/b * sqrt(51)
a* a=a^2
( sqrt(a) )^2 = a
a/b=a * 10/b * 10
a/10* 10 = a
Put minus sign in front of fraction
a/b=a * sqrt(51)/b * sqrt(51)
a* a=a^2
( sqrt(a) )^2 = a