Sign In
Consider using the Pythagorean Identity 1 + tan^2 θ = sec^2 θ.
sin θ = - sqrt(65)/9, cos θ = 4/9, tan θ = - sqrt(65)/4, cot θ = - 4sqrt(65)/65, csc θ = - 9sqrt(65)/65
We want to find the values of the other five trigonometric functions of θ given that sec θ = 94 and 3π2 < θ < 2π.
sec θ= 9/4
In this quadrant, the sine of θ is negative and cosine of θ is positive. Therefore, tan θ = sin θcos θ is negative. We will only keep the negative solution. tan θ = - sqrt(65)/4
Knowing that sec θ = 94 and tan θ = - sqrt(65)4, we are allowed to find the four remaining trigonometric ratios. Remember to simplify fractions and rationalize denominators, if needed.
Function | Substitute | Simplify |
---|---|---|
sin θ=tan θ/sec θ | sin θ=- sqrt(65)4/94 | sin θ = - sqrt(65)/9 |
cos θ=1/sec θ | cos θ=1/94 | cos θ=4/9 |
cot θ=1/tan θ | cot θ=1/- sqrt(65)4 | cot θ=- 4sqrt(65)/65 |
csc θ=sec θ/tan θ | csc θ=94/- sqrt(65)4 | csc θ=- 9sqrt(65)/65 |
a/b=a* 1/b
tan(θ)=sin(θ)/cos(θ)
sec(θ) = 1/cos(θ)
a/b/c= a * c/b
Multiply fractions
Cancel out common factors
Simplify quotient
sin θ= tan θ/sec θ
1/a/b= b/a
tan θ= sin θ/cos θ
1/a/b= b/a
cos θ/sin θ= cot θ
Put minus sign in front of fraction
a/b=a * 4/b * 4
a/b=a * 4/b * 4
Put minus sign in front of fraction
a/b=a * sqrt(65)/b * sqrt(65)
a* a=a^2
( sqrt(a) )^2 = a
a/b=a * 4/b * 4
a/4* 4 = a
Put minus sign in front of fraction
a/b=a * sqrt(65)/b * sqrt(65)
a* a=a^2
( sqrt(a) )^2 = a