Sign In
Consider using the Pythagorean Identity 1 + cot^2 θ = csc^2 θ.
sin θ = - sqrt(10)/10, cos θ = 3sqrt(10)/10, tan θ = - 1/3, csc θ = - sqrt(10), sec θ = sqrt(10)/3
We want to find the values of the other five trigonometric functions of θ given that cot θ = - 3 and 3π2 < θ < 2π.
cot θ= - 3
(- a)^2=a^2
Add terms
Rearrange equation
sqrt(LHS)=sqrt(RHS)
In this quadrant, the sine of θ is negative. Therefore, csc θ = 1sin θ is also negative. We will only keep the negative solution. csc θ = - sqrt(10)
Knowing that cot θ = - 3 and that csc θ = - sqrt(10), we are allowed to find the four remaining trigonometric ratios. Remember to simplify fractions and rationalize denominators, if needed.
Function | Substitute | Simplify |
---|---|---|
sin θ=1/csc θ | sin θ=1/- sqrt(10) | sin θ = - sqrt(10)/10 |
cos θ=cot θ/csc θ | cos θ=- 3/- sqrt(10) | cos θ=3sqrt(10)/10 |
tan θ=1/cot θ | tan θ=1/- 3 | tan θ=- 1/3 |
sec θ=csc θ/cot θ | sec θ=- sqrt(10)/- 3 | sec θ=sqrt(10)/3 |
a/b=a* 1/b
cot(θ) = cos(θ)/sin(θ)
csc(θ) = 1/sin(θ)
a/b/c= a * c/b
Multiply fractions
Cancel out common factors
Simplify quotient
sec(θ) = 1/cos(θ)
cos θ = cot θ/csc θ
1/a/b= b/a
cot θ= cos θ/sin θ
1/a/b= b/a
sin θ/cos θ= tan θ
Put minus sign in front of fraction
a/b=a * sqrt(10)/b * sqrt(10)
a* a=a^2
( sqrt(a) )^2 = a
- a/- b=a/b
a/b=a * sqrt(10)/b * sqrt(10)
a* a=a^2
( sqrt(a) )^2 = a