Big Ideas Math Algebra 2, 2014
BI
Big Ideas Math Algebra 2, 2014 View details
7. Using Trigonometric Identities
Continue to next subchapter

Exercise 9 Page 517

Consider using the Pythagorean Identity 1 + cot^2 θ = csc^2 θ.

sin θ = - sqrt(10)/10, cos θ = 3sqrt(10)/10, tan θ = - 1/3, csc θ = - sqrt(10), sec θ = sqrt(10)/3

Practice makes perfect

We want to find the values of the other five trigonometric functions of θ given that cot θ = - 3 and 3π2 < θ < 2π.

Finding csc θ

To find the value of csc θ, we will use one of the Pythagorean Identities. 1 + cot^2 θ = csc^2 θTo do so, we will substitute - 3 for cot θ in the above equation and solve it for csc θ. Let's do it!
1 + cot^2 θ = csc^2 θ
1+( - 3)^2 = csc^2 θ
â–Ľ
Solve for csc θ
1+9=csc^2 θ
10=csc^2 θ
csc ^2 θ = 10
csc θ =± sqrt(10)
Be aware that we are told that θ lies between 3π2 and 2π. Therefore, θ is in Quadrant IV.
graph

In this quadrant, the sine of θ is negative. Therefore, csc θ = 1sin θ is also negative. We will only keep the negative solution. csc θ = - sqrt(10)

Finding the Other Trigonometric Ratios

Knowing that cot θ = - 3 and that csc θ = - sqrt(10), we are allowed to find the four remaining trigonometric ratios. Remember to simplify fractions and rationalize denominators, if needed.

Function Substitute Simplify
sin θ=1/csc θ sin θ=1/- sqrt(10) sin θ = - sqrt(10)/10
cos θ=cot θ/csc θ cos θ=- 3/- sqrt(10) cos θ=3sqrt(10)/10
tan θ=1/cot θ tan θ=1/- 3 tan θ=- 1/3
sec θ=csc θ/cot θ sec θ=- sqrt(10)/- 3 sec θ=sqrt(10)/3

Showing Our Work

Deriving Formulas and Simplifying Fractions
Let's first prove the identity cos θ= cot θcsc θ. We will use basic identities to show how the right-hand side is equal to the left-hand side.
\cos \theta \stackrel{?}= \dfrac{\cot \theta}{\csc \theta}
\cos \theta \stackrel{?}= \cot \theta\left(\dfrac{1}{\csc \theta}\right)

cot(θ) = cos(θ)/sin(θ)

\cos \theta \stackrel{?}= {\color{#0000FF}{\dfrac{\cos \theta}{\sin \theta}}}\left(\dfrac{1}{\csc \theta}\right)

csc(θ) = 1/sin(θ)

\cos \theta \stackrel{?}= \dfrac{\cos \theta}{\sin \theta}\left(\dfrac{1}{{\color{#0000FF}{\frac{1}{\sin \theta}}}}\right)
\cos \theta \stackrel{?}= \dfrac{\cos \theta}{\sin \theta}\left(\dfrac{\sin \theta}{1}\right)
\cos \theta \stackrel{?}= \dfrac{\cos \theta \cdot \sin \theta}{\sin \theta}
\cos \theta \stackrel{?}= \dfrac{\cos \theta \cdot \cancel{{\color{#FF0000}{\sin \theta}}}}{\cancel{{\color{#FF0000}{\sin \theta}}}}
cos θ = cos θ ✓
Having proved the identity cos θ = cot θcsc θ, we can prove the identity sec θ= csc θcot θ. This time, we will start on the left-hand side and arrive to the right-hand side.
\sec \theta \stackrel{?}=\dfrac{\csc \theta}{\cot \theta}

sec(θ) = 1/cos(θ)

\dfrac{1}{\cos \theta} \stackrel{?}=\dfrac{\csc \theta}{\cot \theta}

cos θ = cot θ/csc θ

\dfrac{1}{{\color{#0000FF}{\frac{\cot \theta}{\csc \theta}}}} \stackrel{?}=\dfrac{\csc \theta}{\cot \theta}
csc θ/cot θ = csc θ/cot θ ✓
By following similar procedures, we can prove that tan θ = 1cot θ.
\tan \theta \stackrel{?}= \dfrac{1}{\cot \theta}
\tan \theta \stackrel{?}= \dfrac{1}{{\color{#0000FF}{ \frac{\cos \theta}{\sin \theta} }}}
\tan \theta \stackrel{?}= \dfrac{\sin \theta}{\cos \theta}
tan θ = tan θ ✓
Let's now see how to rationalize the denominator of the numeric expression 1- sqrt(10).
sin θ=1/- sqrt(10)
â–Ľ
Simplify right-hand side
sin θ=- 1/sqrt(10)
sin θ=- sqrt(10)/sqrt(10)* sqrt(10)
sin θ=- sqrt(10)/(sqrt(10))^2
sin θ=- sqrt(10)/10
Let's now follow a similar procedure to rationalize the expression - 3- sqrt(10).
cos θ = - 3/- sqrt(10)
â–Ľ
Simplify right-hand side
cos θ = 3/sqrt(10)
cos θ=3sqrt(10)/sqrt(10)* sqrt(10)
cos θ=3sqrt(10)/(sqrt(10))^2
cos θ=3sqrt(10)/10