Sign In
Consider using the Pythagorean Identity sin ^2 θ + cos^2 θ = 1.
sin θ = sqrt(35)/6, tan θ = sqrt(35), cot θ = sqrt(35)/35, csc θ = 6sqrt(35)/35, sec θ = 6
We want to find the values of the other five trigonometric functions of θ given that cos θ = 16 and 0 < θ < π2.
cos θ= 1/6
LHS- ( 1/6 )^2=RHS- ( 1/6 )^2
In this quadrant, the sine of θ is positive. Therefore, we will only keep the positive solution. sin θ = sqrt(35)/6
Having the two values of trigonometric functions allows us to find the four remaining trigonometric ratios. Remember to simplify fractions and rationalize denominators, if needed.
Function | Substitute | Simplify |
---|---|---|
tan θ=sin θ/cos θ | tan θ=sqrt(35)6/16 | tan θ = sqrt(35) |
cot θ=cos θ/sin θ | cot θ=16/sqrt(35)6 | cot θ=sqrt(35)/35 |
csc θ=1/sin θ | csc θ=1/sqrt(35)6 | csc θ=6sqrt(35)/35 |
sec θ=1/cos θ | sec θ=1/16 | sec θ=6 |
a/b=a * 6/b * 6
a/b=a * sqrt(35)/b * sqrt(35)
a* a=a^2
( sqrt(a) )^2 = a
a/b=a * 6/b * 6
a/6* 6 = a
a/b=a * sqrt(35)/b * sqrt(35)
a* a=a^2
( sqrt(a) )^2 = a