5. Using Recursive Rules with Sequences
Sign In
f(0)&=2, f(1)=4 f(n)&=f(n-1) - f(n-2) To do so, we will use a table.
n | f(n)=f(n-1)-f(n-2) | f(n-1)-f(n-2) | f(n) |
---|---|---|---|
0 | f( 0)=2 | - | 2 |
1 | f( 1)=4 | - | 4 |
2 | f( 2)=f( 2-1)-f( 2-2) | f(1)- f(0)= 4- 2 | 2 |
3 | f( 3)=f( 3-1)-f( 3-2) | f(2) - f(1)= 2- 4 | - 2 |
4 | f( 4)=f( 4-1) - f( 4-2) | f(3)- f(2) = - 2- 2 | - 4 |
5 | f( 5)=f( 5-1) - f( 5-2) | f(4)- f(3) = - 4- ( - 2) | - 2 |
Therefore, the first 6 terms of the sequence are 2, 4, 2, - 2, - 4 and - 2.