5. Using Recursive Rules with Sequences
Sign In
a_1=2, a_2=5, a_3=26, a_4=677, a_5=458 330, a_6=210 066 388 901
a_1&=2 a_n&=(a_(n-1))^2+1 To do so, we will use a table.
n | a_n=(a_(n-1))^2+1 | (a_(n-1))^2+1 | a_n |
---|---|---|---|
1 | a_1=2 | - | 2 |
2 | a_2=(a_(2-1))^2+1 | ( a_1)^2+1= 2^2+1 | 5 |
3 | a_3=(a_(3-1))^2+1 | ( a_2)^2+1= 5^2+1 | 26 |
4 | a_4=(a_(4-1))^2+1 | ( a_3)^2+1= 26^2+1 | 677 |
5 | a_5=(a_(5-1))^2+1 | ( a_4)^2+1= 677^2+1 | 458 330 |
6 | a_6=(a_(6-1))^2+1 | ( a_5)^2+1= 458 330^2+1 | 210 066 388 901 |
Therefore, the first 6 terms of the sequence are 2, 5, 26, 677, 458 330 and 210 066 388 901.