You must have JavaScript enabled to use this site.
Expand menu
menu_open
Minimize
Start chapters
Home
History
history
History
expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics
equalizer
Progress
expand_more
Student
navigate_next
Teacher
navigate_next
filter_list
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
Choose book
search
cancel
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}%
Sign in to view progress
{{ printedBook.courseTrack.name }}
{{ printedBook.name }}
Get free trial
search
Use offline
Tools
apps
Login
account_circle
menu_open
Using Midpoint and Distance Formulas
Choose Course
Geometry
Geometry Basics
Using Midpoint and Distance Formulas
expand_more
close
Using Midpoint and Distance Formulas 1.3 - Solution
arrow_back
Return to Using Midpoint and Distance Formulas
a
Determine the midpoint with the
midpoint formula
.
M
(
2
x
1
+
x
2
,
2
y
1
+
y
2
)
Thus, we should substitute the two points' coordinates into the formula.
M
(
2
x
1
+
x
2
,
2
y
1
+
y
2
)
SubstitutePoints
Substitute
(
2
,
3
)
&
(
6
,
7
)
M
(
2
2
+
6
,
2
3
+
7
)
AddTerms
Add terms
M
(
2
8
,
2
1
0
)
CalcQuot
Calculate quotient
M
(
4
,
5
)
The midpoint is
(
4
,
5
)
.
b
Use the
midpoint formula
once more, this time for the points
(
1
1
,
9
)
and
(
5
,
1
5
)
.
M
(
2
x
1
+
x
2
,
2
y
1
+
y
2
)
SubstitutePoints
Substitute
(
1
1
,
9
)
&
(
5
,
1
5
)
M
(
2
1
1
+
5
,
2
9
+
1
5
)
AddTerms
Add terms
M
(
2
1
6
,
2
2
4
)
CalcQuot
Calculate quotient
M
(
8
,
1
2
)
The midpoint is
(
8
,
1
2
)
.
c
Now once more, do the same thing for the points
(
2
,
2
)
and
(
-
6
,
1
0
)
.
M
(
2
x
1
+
x
2
,
2
y
1
+
y
2
)
SubstitutePoints
Substitute
(
2
,
2
)
&
(
-
6
,
1
0
)
M
(
2
2
+
(
-
6
)
,
2
2
+
1
0
)
AddNeg
a
+
(
-
b
)
=
a
−
b
M
(
2
2
−
6
,
2
2
+
1
0
)
AddSubTerms
Add and subtract terms
M
(
2
-
4
,
2
1
2
)
CalcQuot
Calculate quotient
M
(
-
2
,
6
)