Expand menu menu_open Minimize Start chapters Home History history History expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics equalizer Progress expand_more
Student
navigate_next
Teacher
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
search
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Use offline Tools apps
Login account_circle menu_open

Using Midpoint and Distance Formulas

Using Midpoint and Distance Formulas 1.1 - Solution

arrow_back Return to Using Midpoint and Distance Formulas
To determine the distance between two points, we use the Distance Formula. The given points are T(-3,4)T(\text{-}3,4) and R(2,-4).R(2,\text{-}4).
TR=(x2x1)2+(y2y1)2TR = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 }
TR=(2(-3))2+(-44)2TR=\sqrt{({\color{#009600}{2}}-({\color{#0000FF}{\text{-}3}}))^2+({\color{#009600}{\text{-}4}}-{\color{#0000FF}{4}})^2}
TR=(2+3)2+(-44)2TR=\sqrt{(2+3)^2+(\text{-}4-4)^2}
TR=52+(-8)2TR=\sqrt{5^2+(\text{-}8)^2}
TR=25+64TR=\sqrt{25+64}
TR=89TR=\sqrt{89}
TR=9.43398TR=9.43398\ldots
TR9.4TR\approx9.4
The distance between TT and RR is about 9.49.4 units.