mathleaks.com mathleaks.com Start chapters home Start History history History expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics equalizer Progress expand_more
Student
navigate_next
Teacher
navigate_next
Expand menu menu_open Minimize
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
search
menu_open home
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Use offline Tools apps
Login account_circle menu_open
Exponential and Logarithmic Functions

Solving Exponential Equations

Exponential equations — equations in which the independent variable is an exponent — can be solved graphically and algebraically. Depending on the equation, different algebraic approaches can be used.
Method

Solving Exponential Equations Graphically

If the dependent variable of an exponential function written in the form is exchanged for a constant, say the result is a one-variable equation:

This type of equation is called an exponential equation, and can be solved graphically. This is done by first graphing the function then finding the -coordinate of the point(s) on the graph with the -coordinate The -coordinate(s) is the solution to the equation.
fullscreen
Exercise

Use the graph to solve the equation

Show Solution
Solution

The graph shows all - points that satisfy the function rule Let's compare the function rule and the equation. The only difference between these two equalities is that the independent variable, is replaced by a in the equation. Thus, we solve the equation by finding the -coordinate of any point on the graph that has the -coordinate

We can identify one such point in the graph. Let's now find the -coordinate of this point graphically.

This -coordinate is not easily read from the graph, so we'll have to make an approximation. It's just a bit bigger than so we'll use This means that an approximate solution to the equation is We can verify this by substituting it into equation to see if a true statement is made.

The right-hand side and the left-hand side are approximately equal, so we have indeed found an approximate solution to the equation:

Method

Solving Exponential Equations with the Same Base

There are different ways to algebraically solve exponential equations. If both sides of the equation can be written in the same base, equality can be used. For example, consider the equation Since the equation can be written as follows. Now, we have two equivalent expressions with the same base. For the equality to hold, the exponents must also be equal. Thus,

fullscreen
Exercise

Solve the equation

Show Solution
Solution
To begin, notice that both sides of the equation are exponential expressions with base Since they have the same base, the exponents must be equal. This gives the equivalent equation which we can solve using inverse operations.
The solution to the equation is
{{ 'mldesktop-placeholder-grade-tab' | message }}
{{ 'mldesktop-placeholder-grade' | message }} {{ article.displayTitle }}!
{{ grade.displayTitle }}
{{ exercise.headTitle }}
{{ 'ml-tooltip-premium-exercise' | message }}
{{ 'ml-tooltip-programming-exercise' | message }} {{ 'course' | message }} {{ exercise.course }}
Test
{{ 'ml-heading-exercise' | message }} {{ focusmode.exercise.exerciseName }}
{{ 'ml-btn-previous-exercise' | message }} arrow_back {{ 'ml-btn-next-exercise' | message }} arrow_forward