Sign In
Use trigonometric ratios to find the apothem and side length of each hexagon.
162sqrt(3)ft^2
To find the area of the shaded region, we will subtract the area of the small hexagon from the area of the big hexagon. To do so, we will use the area formula for a regular polygon. A= 1/2ap We will first find the apothem and perimeters of the hexagons, then their areas.
Hexagon 1 | Hexagon 2 | |
---|---|---|
Cosine Ratio | cos 30^(∘)=a/6 ⇕ a= 6 cos30 ^(∘) | cos 30^(∘)=b/12 ⇕ b= 12cos30 ^(∘) |
Sine Ratio | sin 30^(∘)=x/6 ⇕ x=6 sin30 ^(∘) | sin 30^(∘)=y/12 ⇕ y=12sin 30^(∘) |
Next, we will find the perimeters of the hexagons. Since x and y represent half the side lengths, we need to multiply them by 12 to find the perimeters of the hexagons. rc Hexagon1: & 12 * x = 12* 6sin30^(∘) [0.5em] & = 72 sin30^(∘) [0.5em] [-0.6em] Hexagon2: & 12 * y =12* 12sin30^(∘) [0.5em] & = 144 sin30^(∘)
a= 6cos 30^(∘), p= 72sin30^(∘)
Multiply
1/b* a = a/b
\ifnumequal{30}{0}{\cos\left(0^\circ\right)=1}{}\ifnumequal{30}{30}{\cos\left(30^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{45}{\cos\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{60}{\cos\left(60^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{30}{90}{\cos\left(90^\circ\right)=0}{}\ifnumequal{30}{120}{\cos\left(120^\circ\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{30}{135}{\cos\left(135^\circ\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{150}{\cos\left(150^\circ\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{180}{\cos\left(180^\circ\right)=\text{-} 1}{}\ifnumequal{30}{210}{\cos\left(210^\circ\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{30}{225}{\cos\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{240}{\cos\left(240^\circ\right)=\text{-} \dfrac {1}2}{}\ifnumequal{30}{270}{\cos\left(270^\circ\right)=0}{}\ifnumequal{30}{300}{\cos\left(300^\circ\right)=\dfrac{1}2}{}\ifnumequal{30}{315}{\cos\left(315^\circ\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{330}{\cos\left(330^\circ\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{30}{360}{\cos\left(360^\circ\right)=1}{}
\ifnumequal{30}{0}{\sin\left(0^\circ\right)=0}{}\ifnumequal{30}{30}{\sin\left(30^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{30}{45}{\sin\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{60}{\sin\left(60^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{90}{\sin\left(90^\circ\right)=1}{}\ifnumequal{30}{120}{\sin\left(120^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{135}{\sin\left(135^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{150}{\sin\left(150^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{30}{180}{\sin\left(180^\circ\right)=0}{}\ifnumequal{30}{210}{\sin\left(210^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{30}{225}{\sin\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{240}{\sin\left(240^\circ\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{30}{270}{\sin\left(270^\circ\right)=\text{-}1}{}\ifnumequal{30}{300}{\sin\left(300^\circ\right)=\text{-}\dfrac {\sqrt 3}2}{}\ifnumequal{30}{315}{\sin\left(315^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{330}{\sin\left(330^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{30}{360}{\sin\left(360^\circ\right)=0}{}
Multiply fractions
Calculate quotient
b= 12cos 30^(∘), p= 144sin30^(∘)
Multiply
1/b* a = a/b
\ifnumequal{30}{0}{\cos\left(0^\circ\right)=1}{}\ifnumequal{30}{30}{\cos\left(30^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{45}{\cos\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{60}{\cos\left(60^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{30}{90}{\cos\left(90^\circ\right)=0}{}\ifnumequal{30}{120}{\cos\left(120^\circ\right)=\text{-} \dfrac{1}{2}}{}\ifnumequal{30}{135}{\cos\left(135^\circ\right)=\text{-} \dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{150}{\cos\left(150^\circ\right)=\text{-} \dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{180}{\cos\left(180^\circ\right)=\text{-} 1}{}\ifnumequal{30}{210}{\cos\left(210^\circ\right)=\text{-} \dfrac{\sqrt 3}2}{}\ifnumequal{30}{225}{\cos\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{240}{\cos\left(240^\circ\right)=\text{-} \dfrac {1}2}{}\ifnumequal{30}{270}{\cos\left(270^\circ\right)=0}{}\ifnumequal{30}{300}{\cos\left(300^\circ\right)=\dfrac{1}2}{}\ifnumequal{30}{315}{\cos\left(315^\circ\right)=\dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{330}{\cos\left(330^\circ\right)=\dfrac{\sqrt 3}2}{}\ifnumequal{30}{360}{\cos\left(360^\circ\right)=1}{}
\ifnumequal{30}{0}{\sin\left(0^\circ\right)=0}{}\ifnumequal{30}{30}{\sin\left(30^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{30}{45}{\sin\left(45^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{60}{\sin\left(60^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{90}{\sin\left(90^\circ\right)=1}{}\ifnumequal{30}{120}{\sin\left(120^\circ\right)=\dfrac{\sqrt{3}}{2}}{}\ifnumequal{30}{135}{\sin\left(135^\circ\right)=\dfrac{\sqrt{2}}{2}}{}\ifnumequal{30}{150}{\sin\left(150^\circ\right)=\dfrac{1}{2}}{}\ifnumequal{30}{180}{\sin\left(180^\circ\right)=0}{}\ifnumequal{30}{210}{\sin\left(210^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{30}{225}{\sin\left(225^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{240}{\sin\left(240^\circ\right)=\text{-} \dfrac {\sqrt 3}2}{}\ifnumequal{30}{270}{\sin\left(270^\circ\right)=\text{-}1}{}\ifnumequal{30}{300}{\sin\left(300^\circ\right)=\text{-}\dfrac {\sqrt 3}2}{}\ifnumequal{30}{315}{\sin\left(315^\circ\right)=\text{-} \dfrac {\sqrt{2}} {2}}{}\ifnumequal{30}{330}{\sin\left(330^\circ\right)=\text{-} \dfrac 1 2}{}\ifnumequal{30}{360}{\sin\left(360^\circ\right)=0}{}
Multiply fractions
Calculate quotient
A_2= 216sqrt(3), A_1= 54sqrt(3)
Subtract term