4. Volumes of Prisms and Cylinders
Sign In
The volume of the rectangular prism is equal to the product of its dimensions.
11.25 inches
A soy milk container is a rectangular prism with a length of 4 inches, a width of 2 inches, and a height of 9 inches.
Let h_\text{new} denote the height of the larger container. The volume of a rectangular prism is equal to the product of its dimensions. Now, let's find the volumes of these two containers.
Container | Old | New |
---|---|---|
Length | l= 4 | l= 4 |
Width | w= 2 | w= 2 |
Height | h= 9 | {\color{#FF0000}{h}}={\color{#FF0000}{h_\text{new}}} |
Volume | V= l w h | |
\textcolor{darkorange}{V_\text{old}}=({\color{#0000FF}{4}})({\color{#009600}{2}})({\color{#FF0000}{27}})=\textcolor{darkorange}{72} | \textcolor{darkviolet}{V_\text{new}}=({\color{#0000FF}{4}})({\color{#009600}{2}}){\color{#FF0000}{h_\text{new}}}=\textcolor{darkviolet}{8 h_\text{new}} |
\textcolor{darkorange}{V_\text{old}}={\color{#0000FF}{\textcolor{darkorange}{72}}}, \textcolor{darkviolet}{V_\text{new}}={\color{#009600}{\textcolor{darkviolet}{8 h_\text{new}}}}
a %=a/100
Calculate quotient
Calculate quotient
.LHS /8.=.RHS /8.
Calculate quotient & Use a calculator