Expand menu menu_open Minimize Start chapters Home History history History expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics equalizer Progress expand_more
Student
navigate_next
Teacher
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
search
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Use offline Tools apps
Login account_circle menu_open

Interpreting Quadratic Functions in Factored Form

Interpreting Quadratic Functions in Factored Form 1.6 - Solution

arrow_back Return to Interpreting Quadratic Functions in Factored Form

To match the given function with its graph, we will find its zeros. To do so, we will rewrite it a little bit. y=x(x+3)    y=1(x0)(x(-3))\begin{gathered} y=x(x+3) \ \ \Leftrightarrow \ \ y=1(x-0)(x-(\text{-} 3)) \end{gathered} Note that now the quadratic function is written in factored form. Factored form: y=a(xp)(xq)Given equation: y=1(x0)(x(-3))\begin{aligned} \textbf{Factored form:}&\ y={\color{#0000FF}{a}}(x-{\color{#009600}{p}})(x-{\color{#FF0000}{q}}) \\ \textbf{Given equation:}&\ y={\color{#0000FF}{1}}(x-{\color{#009600}{0}})(x-({\color{#FF0000}{\text{-} 3}})) \end{aligned} In this form, the zeros of the function are p{\color{#009600}{p}} and q.{\color{#FF0000}{q}}. Therefore, the zeros of the given function are 0{\color{#009600}{0}} and -3.{\color{#FF0000}{\text{-} 3}}. This matches choice I.