{{ item.displayTitle }}

No history yet!

Student

Teacher

{{ item.displayTitle }}

{{ item.subject.displayTitle }}

{{ searchError }}

{{ courseTrack.displayTitle }} {{ statistics.percent }}% Sign in to view progress

{{ printedBook.courseTrack.name }} {{ printedBook.name }} We want to match the given radical function with its graph.
$f(x)=x−1 $
To do so, we will start by making a table of values. Recall that the radicand **cannot** be negative. $x−1≥0⇔x≥1 $
Therefore, we will use $x-$values *greater than or equal to* $1.$ Let's start!

$x$ | $x−1 $ | $f(x)=x−1 $ |
---|---|---|

$1$ | $1−1 $ | $0$ |

$2$ | $2−1 $ | $1$ |

$3$ | $3−1 $ | $1.414…$ |

$4$ | $4−1 $ | $1.732…$ |

The ordered pairs $(1,0),$ $(2,1),$ $(3,1.414),$ and $(4,1.732)$ all lie on the graph of the function. Now, we will plot and connect these points with a smooth curve.

As we can see, the graph of the function is given in choice **A**.