{{ item.displayTitle }}

No history yet!

Student

Teacher

{{ item.displayTitle }}

{{ item.subject.displayTitle }}

{{ searchError }}

{{ courseTrack.displayTitle }} {{ statistics.percent }}% Sign in to view progress

{{ printedBook.courseTrack.name }} {{ printedBook.name }} We want to graph the given radical function.
$f(x)=x+1 $
To do so, we will start by making a table of values. Recall that the radicand **cannot** be negative. With this in mind, we can first determine its domain as shown below.
$x+1≥0⇔x≥-1 $
Therefore, we will use $x-$values *greater than or equal to* $-1.$ Let's start!

$x$ | $x+1 $ | $f(x)=x+1 $ |
---|---|---|

$-1$ | $-1+1 $ | $0$ |

$0$ | $0+1 $ | $1$ |

$1$ | $1+1 $ | $1.414…$ |

$2$ | $2+1 $ | $1.732…$ |

$3$ | $3+1 $ | $2$ |

$4$ | $4+1 $ | $2.236…$ |

The ordered pairs $(-1,0),$ $(0,1),$ $(1,1.414),$ $(2,1.732),$ $(3,2),$ and $(4,2.236)$ all lie on the graph of the function. Now, we will plot and connect these points with a smooth curve.

We can see that the graph of the function goes to infinity in the positive direction. Therefore, its range is all real numbers *greater than or equal to* $0.$
$Domain:Range: x≥-1y≥0 $