Start chapters home Start History history History expand_more
{{ item.displayTitle }}
No history yet!
Progress & Statistics equalizer Progress expand_more
Expand menu menu_open Minimize
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
No results
{{ searchError }}
menu_open home
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ }} {{ }}
search Use offline Tools apps
Login account_circle menu_open

Graphing Linear Functions in Slope-Intercept Form

Graphing Linear Functions in Slope-Intercept Form 1.9 - Solution

arrow_back Return to Graphing Linear Functions in Slope-Intercept Form
The given function represents the percent of the software download left to complete. Here, is the time in minutes, and is the percent of the process left to complete. We are asked to find where the function meets the horizontal axis, which is the value that makes We can find it by substituting for
The graph meets the -axis where
In order to graph this function, we need to find its intercepts. The vertical axis is represented by and the horizontal axis by We already found the intersection with the horizontal axis in Part A. Let's now substitute for to find the intersection with the vertical axis.
The intersection with the vertical axis occurs at the point Now, we will plot the intercepts and connect them with a line to obtain the graph of the function. Note that, in the context of the problem, neither nor can be negative.

We found in Part A that the -intercept is at minutes. This means that, after minutes, the percent of the process left to complete will be zero. In other words, the process takes minutes to complete.


We can use the graph in Part B, to find the domain and range of the function.

We see that can take any value from to inclusive. We also see in the graph that can take any value between and inclusive.