{{ item.displayTitle }}

No history yet!

Student

Teacher

{{ item.displayTitle }}

{{ item.subject.displayTitle }}

{{ searchError }}

{{ courseTrack.displayTitle }} {{ statistics.percent }}% Sign in to view progress

{{ printedBook.courseTrack.name }} {{ printedBook.name }} A line "going uphill", moving from left to right, has a positive slope. Only one of the lines, $D,$ slopes upwards.

Similarly, a "downhill" line has a negative slope and a horizontal line has a slope, $m,$ of zero. Therefore,

- $D:$ Positive slope.
- $A:$ Negative slope.
- $C:$ $m=0.$

What about the vertical line, $B?$ We can see what result we get when we try to find its slope using the slope formula. $m = \dfrac{y_2-y_1}{x_2-x_1}$ We need two points, $(x_1,y_1)$ and $(x_2,y_2),$ on the line.

We can use $(7.5, 6)$ and $(7.5, \text{-} 4).$$m = \dfrac{y_2-y_1}{x_2-x_1}$

SubstitutePointsSubstitute $\left({\color{#0000FF}{7.5,6}}\right)$ & $\left({\color{#009600}{7.5,\text{-}4}}\right)$

$m=\dfrac{{\color{#009600}{\text{-} 4}}-{\color{#0000FF}{6}}}{{\color{#009600}{7.5}}-{\color{#0000FF}{7.5}}}$

SubTermsSubtract terms

$m=\dfrac{\text{-} 10}{0}$

- $D:$ Positive slope
- $A:$ Negative slope
- $C:$ $m=0$
- $B:$ Undefined slope