2. Section 6.2
Sign In
Explanation: See solution.
Segment | Points | y_2-y_1/x_2-x_1 | m |
---|---|---|---|
MN | M(-3,6), N(2,8) | 8- 6/2-( - 3) | 2/5 |
QP | Q(- 4,3), P(1,5) | 5- 3/1-( - 4) | 2/5 |
MQ | Q(- 4,3), M(- 3,6) | 6- 3/- 3-( - 4) | 3 |
NP | P(1,5), N(2,8) | 8- 5/2- 1 | 3 |
As we can see, opposite sides are parallel which means this is in fact a parallelogram.
A parallelogram can also be a rhombus if all sides are congruent. Therefore, let's calculate the side lengths using the Distance Formula.
Segment | Points | sqrt((x_2-x_1)^2+(y_2-y_1)^2) | d |
---|---|---|---|
MN | N(2,8), M(- 3,6) | sqrt(( 2-( - 3))^2+( 8- 6)^2) | sqrt(29) |
QP | Q(- 4,3), P(1,5) | sqrt(( - 4- 1)^2+( 3- 5)^2) | sqrt(29) |
MQ | M(- 3,6), Q(- 4,3) | sqrt(( - 3-( - 4))^2+( 6- 3)^2) | sqrt(10) |
NP | P(1,5), N(2,8) | sqrt(( 1- 2)^2+( 5- 8)^2) | sqrt(10) |
Since sqrt(29)≠sqrt(10), we know that MNPQ is in fact a parallelogram.
x → x: the $x-$coordinate is unchanged y→ - y: the $y-$coordinate changes sign. This is the same thing as a reflection in the x-axis.
Now we see that P' has coordinates of (1,- 5).