7. Polygons in the Coordinate Plane
Sign In
Find the slopes of the sides of the parallelogram.
None
Let's plot the given points on a coordinate plane and graph the parallelogram.
Parallelogram | Definition |
---|---|
Rhombus | Parallelogram with four congruent sides |
Rectangle | Parallelogram with four right angles |
Square | Parallelogram with four congruent sides and four right angles |
Now, let's find the slopes of the sides using the Slope Formula.
Side | Points | y_2-y_1/x_2-x_1 | Simplify |
---|---|---|---|
OP | O( 0,0), P( - 1,2) | 2- 0/- 1- 0 | - 2 |
PT | P( - 1,2), T( 3, 2) | 2- 2/3-( - 1) | 0 |
TS | T( 3, 2), S( 4, 0) | 0- 2/4- 3 | - 2 |
SO | S( 4, 0), O( 0,0) | 0- 0/0- 4 | 0 |
We can tell that the consecutive sides are not perpendicular, as their slopes are not opposite reciprocals. - 2 * 0 ≠- 1 Since rectangles and squares have perpendicular sides, our parallelogram can only be rhombus or none of the given types of parallelograms. To check if it is a rhombus, we can find the lengths of its sides using the Distance Formula.
Side | Points | sqrt((x_2-x_1)^2+(y_2-y_1)^2) | Simplify |
---|---|---|---|
OP | O( 0,0), P( - 1,2) | sqrt(( - 1- 0)^2+( 2- 0)^2) | sqrt(5) |
PT | P( - 1,2), T( 3, 2) | sqrt(( 3-( - 1))^2+( 2- 2)^2) | 4 |
TS | T( 3, 2), S( 4, 0) | sqrt(( 4- 3)^2+( 0- 2)^2) | sqrt(5) |
SO | S( 4, 0), O( 0,0) | sqrt(( 0- 4)^2+( 0- 0)^2) | 4 |
Our parallelogram does not have four congruent sides. Therefore, the given parallelogram is not a rhombus and moreover it is none of the given types of parallelograms.