1. Quadratic Graphs and Their Properties
Sign In
Graph all three functions on the same coordinate plane. Then compare the graphs.
f(x)=-2/3x^2, f(x)=-2x^2, f(x)=-4x^2
f(x)=-2x^2 | f(x)=-2/3x^2 | f(x)=-4x^2 | ||||
---|---|---|---|---|---|---|
x | -2x^2 | (x,y) | -2/3x^2 | (x,y) | -4x^2 | (x,y) |
- 2 | -2( - 2)^2 | ( - 2, -8) | -2/3( - 2)^2 | ( - 2, -8/3) | -4( - 2)^2 | ( - 2, -16) |
- 1 | -2( - 1)^2 | ( - 1, -2) | - 2/3( - 1)^2 | ( - 1, - 2/3) | -4( - 1)^2 | ( - 1, -4) |
0 | -2( 0)^2 | ( 0, 0) | - 2/3( 0)^2 | ( 0, 0) | -4( 0)^2 | ( 0, 0) |
1 | -2( 1)^2 | ( 1, -2) | - 2/3( 1)^2 | ( 1, - 2/3) | -4( 1)^2 | ( 1, -4) |
2 | -2( 2)^2 | ( 2, - 8) | - 2/3( 2)^2 | ( 2, - 8/3) | -4( 2)^2 | ( 2, -16) |
Now, let's draw the parabolas by plotting and connecting the obtained points.
Looking at the graphs, we can order the functions from widest to narrowest. f(x)=-2/3x^2, f(x)=- 2x^2, f(x)=-4x^2