1. Quadratic Graphs and Their Properties
Sign In
Graph all three functions on the same coordinate plane. Then compare the graphs.
y=-1/4x^2, y=-1/2x^2, y=5x^2
y=-1/2x^2 | y=5x^2 | y=-1/4x^2 | ||||
---|---|---|---|---|---|---|
x | -1/2x^2 | (x,y) | 5x^2 | (x,y) | -1/4x^2 | (x,y) |
- 2 | -1/2( - 2)^2 | ( - 2, - 2) | 5( - 2)^2 | ( - 2, 20) | -1/4( - 2)^2 | ( - 2, -1) |
- 1 | -1/2( - 1)^2 | ( - 1, -1/2) | 5( - 1)^2 | ( - 1, 5) | -1/4( - 1)^2 | ( - 1, -1/4) |
0 | -1/2( 0)^2 | ( 0, 0) | 5( 0)^2 | ( 0, 0) | -1/4( 0)^2 | ( 0, 0) |
1 | -1/2( 1)^2 | ( 1, -1/2) | 5( 1)^2 | ( 1, 5) | -1/4( 1)^2 | ( 1, -1/4) |
2 | -1/2( 2)^2 | ( 2, -2) | 5( 2)^2 | ( 2, 20) | -1/4( 2)^2 | ( 2, -1) |
Now, let's draw the parabolas by plotting and connecting the obtained points.
Looking at the graphs, we can order the functions from widest to narrowest. y=-1/4x^2, y=-1/2x^2, y=5x^2