6. Similarity Transformations
Sign In
Find the lengths of the sides of each triangle.
Graph:
Verification: See solution.
Let's use the given coordinates to draw the original figure and the image of its dilation.
Side | Vertices | Distance Formula | Simplified |
---|---|---|---|
JK | ( - 6,8), (6,6) | sqrt((6-( -6))^2+(6- 8)^2) | 2sqrt(37) |
DG | ( - 12,16), (12,12) | sqrt((12-( - 12))^2+(12- 16)^2) | 4sqrt(37) |
KL | (6,6), ( - 2,4) | sqrt(( - 2-6)^2+( 4-6)^2) | 2sqrt(17) |
GH | (12,12), ( - 4,8) | sqrt(( - 4-12)^2+( 8-12)^2) | 4sqrt(17) |
LJ | ( - 2,4), ( - 6,8) | sqrt(( - 6-( - 2))^2+( 8- 4)^2) | 4sqrt(2) |
HD | ( - 4,8), ( - 12,16) | sqrt(( - 12-( - 4))^2+( 16- 8)^2) | 8sqrt(2) |
Now, we can find the ratios between the corresponding sides. DG/JK=4sqrt(37)/2sqrt(37) = 2 [1.2em] GH/KL=4sqrt(17)/2sqrt(17) = 2 [1.2em] HD/LJ=8sqrt(2)/4sqrt(2) = 2 We can tell that these ratios are equivalent. Therefore, the corresponding side lengths of â–ł JKL and â–ł DGH are proportional. By the Side-Side-Side Similarity Theorem, we can conclude that â–ł JKL is similar to â–ł DGH. â–ł JKL ~ â–ł DGH Therefore, the dilation is a similarity transformation.