5. Isosceles and Equilateral Triangles
Sign In
Triangle I | Triangle II | Triangle III |
---|---|---|
|
|
|
m∠ 1 | m∠ 5 | m∠ 4 | m∠ 3 | |
---|---|---|---|---|
Triangle I | 140^(∘) | 40^(∘) | 40^(∘) | 100^(∘) |
Triangle II | 130^(∘) | 50^(∘) | 50^(∘) | 80^(∘) |
Triangle III | 120^(∘) | 60^(∘) | 60^(∘) | 60^(∘) |
Table for ∠ 2
m∠ 2 | m∠ 3 | m∠ 4 | m∠ 5 | |
---|---|---|---|---|
Triangle I | 80^(∘) | 100^(∘) | 40^(∘) | 40^(∘) |
Triangle II | 100^(∘) | 80^(∘) | 50^(∘) | 50^(∘) |
Triangle III | 120^(∘) | 60^(∘) | 60^(∘) | 60^(∘) |
m∠ 1 | m∠ 5 | m∠ 4 | m∠ 3 |
---|---|---|---|
x | 180^(∘)-x | 180^(∘)-x | 2x-180^(∘) |
Table for ∠ 2
m∠ 2 | m∠ 3 | m∠ 4 | m∠ 5 |
---|---|---|---|
x | 180^(∘)-x | x/2 | x/2 |
Now we will draw the same angle measure from point B.
Finally, we can mark the point where two lines meet as C and remove the unnecessary parts.
Proceeding in the same way, we can draw two more isosceles triangle with the base angles of 50^(∘) and 60^(∘).
Triangle I | Triangle II | Triangle III |
---|---|---|
|
|
|
m∠ 1 | m∠ 5 | m∠ 4 | m∠ 3 |
---|---|---|---|
140^(∘) | m∠ 5=180^(∘)-m∠ 1 m∠ 5=40^(∘) | m∠ 4=m∠ 5 m∠ 4=40^(∘) | m∠ 3=180^(∘)-(m∠ 4+m∠ 5) m∠ 3=100^(∘) |
Next, we will measure ∠ 2.
We can see that the measure of ∠ 2 is 80^(∘). Let's use the measures of the other angles using m∠2.
m∠ 2 | m∠ 3 | m∠ 4 | m∠ 5 |
---|---|---|---|
80^(∘) | m∠ 3=180^(∘)-m∠ 2 m∠ 3=100^(∘) | m∠ 4=m∠2/2 m∠ 4=40^(∘) | m∠ 5=m∠4 m∠ 5=40^(∘) |
Using the same way, we can calculate the angles measure of the other triangles. Let's start with using ∠ 1.
m∠ 1 | m∠ 5 | m∠ 4 | m∠ 3 | |
---|---|---|---|---|
Triangle I | 140^(∘) | m∠ 5=180^(∘)-m∠ 1 m∠ 5=40^(∘) | m∠ 4=m∠ 5 m∠ 4=40^(∘) | m∠ 3=180^(∘)-(m∠ 4+m∠ 5) m∠ 3=100^(∘) |
Triangle II | 130^(∘) | m∠ 5=180^(∘)-m∠ 1 m∠ 5=50^(∘) | m∠ 4=m∠ 5 m∠ 4=50^(∘) | m∠ 3=180^(∘)-(m∠ 4+m∠ 5) m∠ 3=80^(∘) |
Triangle III | 120^(∘) | m∠ 5=180^(∘)-m∠ 1 m∠ 5=60^(∘) | m∠ 4=m∠ 5 m∠ 4=60^(∘) | m∠ 3=180^(∘)-(m∠ 4+m∠ 5) m∠ 3=60^(∘) |
Now we will do the same thing for ∠ 2.
m∠ 2 | m∠ 3 | m∠ 4 | m∠ 5 | |
---|---|---|---|---|
Triangle I | 80^(∘) | m∠ 3=180^(∘)-m∠ 2 m∠ 3=100^(∘) | m∠ 4=m∠2/2 m∠ 4=40^(∘) | m∠ 5=m∠4 m∠ 5=40^(∘) |
Triangle II | 100^(∘) | m∠ 3=180^(∘)-m∠ 2 m∠ 3=80^(∘) | m∠ 4=m∠2/2 m∠ 4=50^(∘) | m∠ 5=m∠4 m∠ 5=50^(∘) |
Triangle III | 120^(∘) | m∠ 3=180^(∘)-m∠ 2 m∠ 3=60^(∘) | m∠ 4=m∠2/2 m∠ 4=60^(∘) | m∠ 5=m∠4 m∠ 5=60^(∘) |
m∠ 1 | m∠ 5 | m∠ 4 | m∠ 3 |
---|---|---|---|
x | 180^(∘)-x | 180^(∘)-x | 2x-180^(∘) |
We will do the same thing for m∠2=x.
m∠ 2 | m∠ 3 | m∠ 4 | m∠ 5 |
---|---|---|---|
x | 180^(∘)-x | x/2 | x/2 |