McGraw Hill Integrated II, 2012
MH
McGraw Hill Integrated II, 2012 View details
5. Isosceles and Equilateral Triangles
Continue to next subchapter

Exercise 44 Page 381

Practice makes perfect
a We will first plot two points A and B on the coordinate plane. Then we will connect these points by a ruler to draw a straight line extending it to the right. Let's do it!
Next, we will draw an angle of 40^(∘) from point A.

Now we will draw the same angle measure from point B.

Finally, we can mark the point where two lines meet as C and remove the unnecessary parts.

Proceeding in the same way, we can draw two more isosceles triangle with the base angles of 50^(∘) and 60^(∘).

Triangle I Triangle II Triangle III
b Let's measure ∠ 1 of Triangle I using a protractor.
We can see that the measure of ∠ 1 is 140^(∘). With this, we will find the angle measures of the other angles.
m∠ 1 m∠ 5 m∠ 4 m∠ 3
140^(∘) m∠ 5=180^(∘)-m∠ 1 m∠ 5=40^(∘) m∠ 4=m∠ 5 m∠ 4=40^(∘) m∠ 3=180^(∘)-(m∠ 4+m∠ 5) m∠ 3=100^(∘)

Next, we will measure ∠ 2.

We can see that the measure of ∠ 2 is 80^(∘). Let's use the measures of the other angles using m∠2.

m∠ 2 m∠ 3 m∠ 4 m∠ 5
80^(∘) m∠ 3=180^(∘)-m∠ 2 m∠ 3=100^(∘) m∠ 4=m∠2/2 m∠ 4=40^(∘) m∠ 5=m∠4 m∠ 5=40^(∘)

Using the same way, we can calculate the angles measure of the other triangles. Let's start with using ∠ 1.

m∠ 1 m∠ 5 m∠ 4 m∠ 3
Triangle I 140^(∘) m∠ 5=180^(∘)-m∠ 1 m∠ 5=40^(∘) m∠ 4=m∠ 5 m∠ 4=40^(∘) m∠ 3=180^(∘)-(m∠ 4+m∠ 5) m∠ 3=100^(∘)
Triangle II 130^(∘) m∠ 5=180^(∘)-m∠ 1 m∠ 5=50^(∘) m∠ 4=m∠ 5 m∠ 4=50^(∘) m∠ 3=180^(∘)-(m∠ 4+m∠ 5) m∠ 3=80^(∘)
Triangle III 120^(∘) m∠ 5=180^(∘)-m∠ 1 m∠ 5=60^(∘) m∠ 4=m∠ 5 m∠ 4=60^(∘) m∠ 3=180^(∘)-(m∠ 4+m∠ 5) m∠ 3=60^(∘)

Now we will do the same thing for ∠ 2.

m∠ 2 m∠ 3 m∠ 4 m∠ 5
Triangle I 80^(∘) m∠ 3=180^(∘)-m∠ 2 m∠ 3=100^(∘) m∠ 4=m∠2/2 m∠ 4=40^(∘) m∠ 5=m∠4 m∠ 5=40^(∘)
Triangle II 100^(∘) m∠ 3=180^(∘)-m∠ 2 m∠ 3=80^(∘) m∠ 4=m∠2/2 m∠ 4=50^(∘) m∠ 5=m∠4 m∠ 5=50^(∘)
Triangle III 120^(∘) m∠ 3=180^(∘)-m∠ 2 m∠ 3=60^(∘) m∠ 4=m∠2/2 m∠ 4=60^(∘) m∠ 5=m∠4 m∠ 5=60^(∘)
c ∠ 5 is supplementary to ∠ 1, so m∠ 5=180^(∘)-m∠1. The sum of the angle measures in a triangle must be 180^(∘), so m∠ 3=180^(∘)-(m∠4+m∠5). ∠ 2 is supplementary to ∠ 3, so m∠ 3=180^(∘)-m∠2. m∠ 2 is twice as much as m∠ 4 and m∠ 5. Thus, m∠4=m∠5= m∠22.
d Let's substitute x for m∠1 into the table in part B.
m∠ 1 m∠ 5 m∠ 4 m∠ 3
x 180^(∘)-x 180^(∘)-x 2x-180^(∘)

We will do the same thing for m∠2=x.

m∠ 2 m∠ 3 m∠ 4 m∠ 5
x 180^(∘)-x x/2 x/2