McGraw Hill Integrated II, 2012
MH
McGraw Hill Integrated II, 2012 View details
3. Multiplying Polynomials
Continue to next subchapter

Exercise 42 Page 26

64y^3-48y^2z-36yz^2+27z^3

Practice makes perfect
We can find the product of this expression using polynomial identities. In this case, we have the square of a binomial. We will first rewrite the square as the product and then apply the Distributive Property.
(4y+3z)(4y-3z)^2
(4y+3z)(4y-3z)(4y-3z)
(4y+3z) ( 4y(4y-3z)-3z(4y-3z) )
â–Ľ
Distribute 4y & -3z
(4y+3z) ( 16y^2-12yz-3z(4y-3z) )
(4y+3z) ( 16y^2-12yz-12yz+9z^2 )
(4y+3z) ( 16y^2-24yz+9z^2 )
4y( 16y^2-24yz+9z^2 )+3z( 16y^2-24yz+9z^2 )
â–Ľ
Distribute 4y & 3z
64y^3-96y^2z+36yz^2+3z( 16y^2-24yz+9z^2 )
64y^3-96y^2z+36yz^2+48y^2z-72yz^2+27z^3
Finally, let's identify and combine like terms. 64y^3 - 96y^2z + 36yz^2 + 48y^2z - 72yz^2+ 27z^3 ⇕ 64y^3 - 48y^2z - 36yz^2+ 27z^3