McGraw Hill Integrated II, 2012
MH
McGraw Hill Integrated II, 2012 View details
3. Multiplying Polynomials
Continue to next subchapter

Exercise 46 Page 26

x^(2m-1)-x^(m-p+1)+x^(m+p)+x^(m+p-1)-x+ x^(2p)

Practice makes perfect
To find the product, we will first use the Distributive Property.
( x^m+x^p)( x^(m-1)-x^(1-p)+x^p)
x^m( x^(m-1)-x^(1-p)+x^p) + x^p( x^(m-1)-x^(1-p)+x^p)
â–Ľ
Distribute (x^m) & (x^p)
x^m* x^(m-1)-x^m* x^(1-p)+x^m* x^p+x^p(x^(m-1)-x^(1-p)+x^p)
x^m* x^(m-1)-x^m* x^(1-p)+x^m* x^p+x^p* x^(m-1)-x^p * x^(1-p)+x^p * x^p
Now we need to use the Product of Powers Property.
x^m* x^(m-1)-x^m* x^(1-p)+x^m* x^p+x^p* x^(m-1)-x^p * x^(1-p)+x^p * x^p
x^(m+m-1)-x^(m+1-p)+x^(m+p)+x^(p+m-1)-x^(p+1-p)+ x^(p+p)
x^(2m-1)-x^(m-p+1)+x^(m+p)+x^(m+p-1)-x^1+ x^(2p)
x^(2m-1)-x^(m-p+1)+x^(m+p)+x^(m+p-1)-x+ x^(2p)
This expression is the result of the product.