!
You must have JavaScript enabled to use this site.
Mathleaks
Mathleaks
Our Functions
News
Get Premium
Student
Parent
Sign In
Create Account
Dashboard
Leave Preview
Menu
Sign in
Create Account
Dashboard
Sign out
Loading course
MH
McGraw Hill Integrated II, 2012
View details
arrow_back
3. Multiplying Polynomials
0. Preparing for Integrated Math II
13 Subchapters
1. Quadratic Expressions and Equations
p. 3-89
20 Subchapters
2. Quadratic Functions and Equations
p. 91-165
20 Subchapters
3. Quadratic Functions and Relations
p. 167-223
17 Subchapters
4. Exponential and Logarithmic Functions and Relations
p. 225-271
14 Subchapters
5. Reasoning and Proof
p. 273-331
12 Subchapters
6. Congruent Triangles
p. 333-401
15 Subchapters
7. Relationships in Triangles
p. 403-471
16 Subchapters
8. Quadrilaterals
p. 473-539
14 Subchapters
9. Proportions and Similarity
p. 541-615
16 Subchapters
10. Right Triangles and Trigonometry
p. 617-711
21 Subchapters
11. Circles
p. 713-801
17 Subchapters
12. Extending Surface Area and Volume
p. 803-879
19 Subchapters
13. Probability and Measurement
p. 881-941
14 Subchapters
Start
arrow_right
Exercises
p. 25-27
66 Solutions
1
p. 25
2
p. 25
3
p. 25
4
p. 25
5
p. 25
6
p. 25
7
p. 25
8
p. 25
9
p. 25
10
p. 25
11
p. 25
12
p. 25
13
p. 25
14
p. 25
15
p. 25
16
p. 25
17
p. 25
18
p. 25
19
p. 25
20
p. 25
21
p. 25
22
p. 25
23
p. 25
24
p. 25
25
p. 25
26
p. 25
27
p. 25
28
p. 25
29
p. 25
30
p. 25
31
p. 25
32
p. 25
33
p. 25
34
p. 25
35
p. 26
36
p. 26
37
p. 26
38
p. 26
39
p. 26
40
p. 26
41
p. 26
42
p. 26
43
p. 26
44
p. 26
45
p. 26
46
p. 26
47
p. 26
48
p. 26
49
p. 26
50
p. 27
51
p. 27
52
p. 27
53
p. 27
54
p. 27
55
p. 27
56
p. 27
57
p. 27
58
p. 27
59
p. 27
60
p. 27
61
p. 27
62
p. 27
63
p. 27
64
p. 27
65
p. 27
66
p. 27
Continue to next subchapter
search
Exercise
35
Page
26
Page
26
A
B
Hint & Answer
Solution
more_vert
add_to_home_screen
Open in app (free)
share
Share
feedback
Report error
handyman
Digital math tools
table_chart
Geogebra classic
support
Hints
expand_more
A
a
Use the FOIL Method.
visibility_off
Show hint for A
B
b
Find the value of y.
visibility_off
Show hint for B
new_releases
Check the answer
expand_more
A
a
18y^2+9y-20 ft^2
visibility_off
Show answer for A
B
b
1519 ft^2
visibility_off
Show answer for B
Practice makes perfect
Practice exercises
Find more exercises to practice for Multiplying Polynomials
arrow_right
Asses your skill
Test your problem-solving skills with the Multiplying Polynomials test
arrow_right
forum
Ask a question
autorenew
track_changes
Progress overview
a
The
area of a rectangle
is calculated by multiplying the rectangle's length, l, with its width, w.
A= l * w ⇕ A= ( 3y+4)( 6y-5) We can use the FOIL Method to product of these
binomials
.
(3y+4)(6y-5)
MultPar
Multiply parentheses
(3y)(6y)+(3y)(- 5)+(4)(6y)+(4)(- 5)
Multiply
Multiply
18y^2-15y+24y-20
AddTerms
Add terms
18y^2+9y-20
The area of the court is 18y^2+9y-20 ft^2.
b
The length of the volleyball court is represented by 3y+4, so it should be equal to 31.
3y+4= 31 ⇒ y=9
We can find its width (6y-5) by substituting 9 for y.
6y-5
Substitute
y= 9
6( 9)-5
â–Ľ
Evaluate
Multiply
Multiply
54-5
SubTerm
Subtract term
49
The width of the court is 49 feet. We will now multiply the width and length to find the area. A&=31* 49 &= 1519 The court has an area of 1519 ft^2.
Multiplying Polynomials
Level 1 exercises - Multiplying Polynomials
Level 2 exercises - Multiplying Polynomials
Level 3 exercises - Multiplying Polynomials
Subchapter links
expand_more
arrow_right
Exercises
p.25-27
1
Exercises
2
(Page 25)
Exercises
3
(Page 25)
Exercises
4
(Page 25)
Exercises
5
(Page 25)
Exercises
6
(Page 25)
Exercises
7
(Page 25)
Exercises
8
(Page 25)
Exercises
9
(Page 25)
Exercises
10
(Page 25)
Exercises
11
(Page 25)
Exercises
12
(Page 25)
Exercises
13
(Page 25)
Exercises
14
(Page 25)
Exercises
15
(Page 25)
Exercises
16
(Page 25)
Exercises
17
(Page 25)
Exercises
18
(Page 25)
Exercises
19
(Page 25)
Exercises
20
(Page 25)
Exercises
21
(Page 25)
Exercises
22
(Page 25)
Exercises
23
(Page 25)
Exercises
24
(Page 25)
Exercises
25
(Page 25)
Exercises
26
(Page 25)
Exercises
27
(Page 25)
Exercises
28
(Page 25)
Exercises
29
(Page 25)
Exercises
30
(Page 25)
Exercises
31
(Page 25)
Exercises
32
(Page 25)
Exercises
33
(Page 25)
Exercises
34
(Page 25)
Exercises
35
(Page 26)
Exercises
36
(Page 26)
Exercises
37
(Page 26)
Exercises
38
(Page 26)
Exercises
39
(Page 26)
Exercises
40
(Page 26)
Exercises
41
(Page 26)
Exercises
42
(Page 26)
Exercises
43
(Page 26)
Exercises
44
(Page 26)
Exercises
45
(Page 26)
Exercises
46
(Page 26)
Exercises
47
(Page 26)
Exercises
48
(Page 26)
Exercises
49
(Page 26)
Exercises
50
(Page 27)
Exercises
51
(Page 27)
Exercises
52
(Page 27)
Exercises
53
(Page 27)
Exercises
54
(Page 27)
Exercises
55
(Page 27)
Exercises
56
(Page 27)
Exercises
57
(Page 27)
Exercises
58
(Page 27)
Exercises
59
(Page 27)
Exercises
60
(Page 27)
Exercises
61
(Page 27)
Exercises
62
(Page 27)
Exercises
63
(Page 27)
Exercises
64
(Page 27)
Exercises
65
(Page 27)
Exercises
66
(Page 27)
Loading content