Pearson Geometry Common Core, 2011
PG
Pearson Geometry Common Core, 2011 View details
6. Trapezoids and Kites
Continue to next subchapter

Exercise 75 Page 397

Midpoint: (1,3)
Length: 10sqrt(2)

Practice makes perfect

We want to find the midpoint and the length of the line segment AB.

Midpoint

To find the midpoint we can use the Midpoint Formula. M ( x_1+x_22, y_1+y_22)Let's substitute the coordinates of A and B into this formula.
(x_1+x_2/2,y_1+y_2/2)
(6+( - 4)/2,- 2+ 8/2)
(2/2, - 2 + 8/2)
(2/2, 6/2)
(1, 3)
The midpoint of AB is the point (1, 3).

Length of AB

To find the length of AB, we can use the Distance Formula. d=sqrt((x_2-x_1)^2+(y_2-y_1)^2) Let's substitute the given coordinates, A(6,- 2) and B(- 4, 8), into this formula and simplify.
d = sqrt((x_2-x_1)^2 + (y_2-y_1)^2)
d=sqrt(( - 4- 6)^2+( 8-( - 2))^2)
d = sqrt((- 4 - 6)^2 + (8 + 2)^2)
d=sqrt((- 10)^2+10^2)
d = sqrt(10^2 + 10^2)
d = sqrt(100 + 100)
d = sqrt(200)
d = sqrt(100 * 2)
d = sqrt(100) * sqrt(2)
d = 10sqrt(2)
The length of AB is 10sqrt(2).