Sign In
Concurrency of Medians Theorem |
The medians of a triangle are concurrent at a point that is two thirds the distance from each vertex to the midpoint of the opposite side. |
Substitute A( 0, 0) & B( 2, 6)
Add terms
Calculate quotient
End Points | Midpoint Formula | Midpoints Coordinates |
---|---|---|
B( 2, 6) & C( 8, 0) | (2+ 8/2, 6+ 0/2 ) | M( 5, 3) |
A( 0, 0) & C( 8, 0) | (0+ 8/2, 0+ 0/2 ) | N( 4, 0) |
Substitute ( 0,0) & ( 5,3)
Subtract terms
Line | Points | m=y_2-y_1/x_2-x_1 | y-y_1=m(x-x_1) | Equation |
---|---|---|---|---|
BN | B( 2, 6) & N( 4, 0) | 0- 6/4- 2=-3 | y- 6=-3(x- 2) | y=-3x+12 |
CL | C( 8, 0) & L( 1, 3) | 3- 0/1- 8=-3/7 | y- 0=-3/7(x- 8) | y=-3/7x+24/7 |
(II): y= 3/5x
(II): a = 5* a/5
(II): LHS+-15x/5=RHS+-15x/5
(II): LHS * 5=RHS* 5
(II): .LHS /18.=.RHS /18.
(II): a/b=.a /6./.b /6.
(I): x= 10/3
(I): Multiply fractions
(I): Calculate quotient
x= 10/3, y= 2
Multiply fractions
a/b=.a /3./.b /3.
Add fractions
Add terms
Calculate quotient
Substitute ( 0, 0) & ( 5, 3)
Substitute ( 0, 0) & (10/3,2)
Subtract terms
Calculate power
a = 9* a/9
Add fractions
Rewrite 136 as 4* 34
sqrt(a/b)=sqrt(a)/sqrt(b)
sqrt(a* b)=sqrt(a)*sqrt(b)
Calculate root
a/b=1/b* a
Endpoints | d = sqrt((x_2-x_1)^2 + (y_2-y_1)^2) | Distance |
---|---|---|
B( 2, 6) & N( 4, 0) | BN=sqrt(( 4- 2)^2+( 0- 6)^2) | 2sqrt(10) |
B( 2, 6) & P(10/3,2) | BP=sqrt((10/3- 2)^2+(2- 6)^2) | 4sqrt(10)/3 = 2/3* 2sqrt(10) |
C( 8, 0) & L( 1, 3) | CL=sqrt(( 1- 8)^2+( 3- 0)^2) | sqrt(58) |
C( 8, 0) & P(10/3,2) | CP=sqrt((10/3- 8)^2+(2- 0)^2) | 2sqrt(58)/3 |
From the table, we have the following relations. lc BP = 4sqrt(10)/3 = 2/3BN & âś“ CP = 2sqrt(58)/3 = 2/3CL & âś“ Through this process, we have proven the Concurrency of Medians Theorem for â–ł ABC.