7. Graphing Rational Functions
Sign In
Plot both of the graphs and then compare some points on the graphs.
Translates the graph 3 units to the left and 2 units down
f(x)=7/x &⇔ f(x)=7/x- 0+ 0 y=7/x+3-2 &⇔ y=7/x-( -3)+( -2) We can see that h= 0 and k= 0 for f(x). Therefore, the asymptotes are the lines x= 0 and y= 0. Moreover, h= -3 and k= -2 for y. This means that the asymptotes are the lines x= -3 and y= -2. &Asymptotes f(x): &⇒ x= 0 & y= 0 y: &⇒ x= -3 & y= -2 With this in mind, we will make a table of values to identify the points while f(x) is translated to y. To do so we will split the function y into two to determine the vertical and horizontal translations separately.
f(x)=7/x | 7/x+3 | y=7/x+3-2 | ||||||
---|---|---|---|---|---|---|---|---|
x | 7/x | (x,y) | x | 7/x+3 | (x,y) | x | 7/x+3-2 | (x,y) |
- 3.5 | 7/- 3.5 | ( - 3.5, - 2) | - 6.5 | 7/-6.5+3 | ( -6.5, -2) | - 6.5 | 7/-6.5+3-2 | ( -6.5, -4) |
- 2 | 7/- 2 | ( -2, - 3.5) | -5 | 7/-5+3 | ( -5, - 3.5) | -5 | 7/-5+3-2 | ( -5, - 5.5) |
- 1 | 7/- 1 | ( - 1, - 7) | -4 | 7/-4+3 | ( -4, - 7) | -4 | 7/-4+3-2 | ( -4, - 9) |
1 | 7/1 | ( 1, 7) | -2 | 7/-2+3 | ( -2, 7) | -2 | 7/-2+3-2 | ( -2, 5) |
2 | 7/2 | ( 2, 3.5) | -1 | 7/-1+3 | ( -1, 3.5) | -1 | 7/-1+3-2 | ( -1, 1.5) |
3.5 | 7/3.5 | ( 3.5, 2) | 0.5 | 7/0.5+3 | ( 0.5, 2) | 0.5 | 7/0.5+3-2 | ( 0.5, 0) |