Pearson Algebra 1 Common Core, 2011
PA
Pearson Algebra 1 Common Core, 2011 View details
6. Trigonometric Ratios
Continue to next subchapter

Exercise 59 Page 651

Try to rewrite a trinomial as a product of two binomials.

(x+2)(x+4)

Practice makes perfect
To factor a trinomial with a leading coefficient of 1, think of the process as multiplying two binomials in reverse. Let's start by taking a look at the constant term. x^2+6x+8 In this case, we have 8. This is a positive number, so for the product of the constant terms in the factors to be positive, these constants must have the same sign (both positive or both negative.)
Factor Constants Product of Constants
1 and 8 8
-1 and -8 8
2 and 4 8
-2 and -4 8

Next, let's consider the coefficient of the linear term. x^2+6x+8 For this term, we need the sum of the factors that produced the constant term to equal the coefficient of the linear term, 6.

Factors Sum of Factors
1 and 8 9
-1 and -8 - 9
2 and 4 6
-2 and -4 - 6
We found the factors whose product is 8 and whose sum is 6. x^2+6x+8 ⇔ (x+2)(x+4)

Checking Our Answer

Check your answer âś“
We can check our answer by applying the Distributive Property and comparing the result with the given expression.
(x+2) (x + 4)
x (x+4) +2 (x + 4)
x^2 + 4x +2 (x + 4)
x^2 + 4x +2x +8
x^2+6x+8
After applying the Distributive Property and simplifying, the result is the same as the given expression. Therefore, we can be sure our solution is correct!