4. Proving Triangles Congruent-ASA, AAS
Sign In
Calculate the lengths of the sides of the triangles using the Distance Formula.
Yes, see solution.
To see whether △ ABC and △ XYZ are congruent or not, let's find the lengths of the sides.
Substitute ( 6,4) & ( 1,- 6)
Subtract terms
(- a)^2=a^2
Calculate power
Add terms
| Corresponding Sides | Distance Formula | Result |
|---|---|---|
| AB and XY | sqrt((1-6)^2+(- 6-4)^2) ? = sqrt((5-0)^2+(- 3-7)^2) | sqrt(125)= sqrt(125) |
| BC and YZ | sqrt((- 9-1)^2+(5-(- 6))^2) ? = sqrt((15-5)^2+(8-(- 3))^2) | sqrt(221)= sqrt(221) |
| CA and ZX | sqrt((6-(- 9))^2+(4-5)^2) ? = sqrt((0-15)^2+(7-8)^2) | sqrt(226)= sqrt(226) |
Since all three side pairs are congruent, the Side-Side-Side (SSS) Congruence Postulate guarantees that the triangles are congruent. △ ABC ≅△ XYZ