We can apply the and compare the result with the given expression.
(r^2+k^2)(r + k) (r - k)
(r(r^2+k^2) + k(r^2+k^2)) (r - k)
(r^3+k^2r + k(r^2+k^2))(r - k)
(r^3+k^2r+kr^2+k^3)(r-k)
r^3(r-k) + k^2r(r-k) + kr^2(r-k) + k^3(r-k)
r^4-kr^3 + k^2r(r-k) + kr^2(r-k) + k^3(r-k)
r^4-kr^3 + k^2r^2-k^3r + kr^2(r-k) + k^3(r-k)
r^4-kr^3 + k^2r^2-k^3r + kr^3-k^2r^2 + k^3(r-k)
r^4-kr^3 + k^2r^2-k^3r + kr^3-k^2r^2 + k^3r -k^4
r^4-k^4
After applying the Distributive Property and simplifying, the result is the same as the given expression. Therefore, we can be sure our solution is correct!