6. Similarity Transformations
Sign In
To graph â–ł ADE that is twice large as â–ł ABC, we draw vertices D and E at the extensions of AB and AC. Moreover, the length of AD should be twice the length of AB and the length of AE should be twice the length of SegAC.
These are possible coordinates.
Finally let's use the scale factor of 4 to draw the third pair of triangles TWX and TYZ.
Coordinates | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
â–ł ABC | â–ł ADE | â–ł MNP | â–ł MQR | â–ł TWX | â–ł TYZ | ||||||
A | (0,0) | A | (0,0) | M | (0,0) | M | (0,0) | T | (0,0) | T | (0,0) |
B | (1,2) | D | (2,4) | N | (1,1) | Q | (3,3) | W | (0,2) | Y | (0,8) |
C | (3,1) | E | (6,2) | P | (2,1) | R | (6,3) | X | (1,0) | Z | (4,0) |
Coordinates | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
â–ł ABC | â–ł ADE | â–ł MNP | â–ł MQR | â–ł TWX | â–ł TYZ | ||||||
A | (0,0) | A | ( 2(0), 2(0)) | M | (0,0) | M | ( 3(0), 3(0)) | T | (0,0) | T | ( 4(0), 4(0)) |
B | (1,2) | D | ( 2(1), 2(2)) | N | (1,1) | Q | ( 3(1), 3(1)) | W | (0,2) | Y | ( 4(0), 4(2)) |
C | (3,1) | E | ( 2(3), 2(1)) | P | (2,1) | R | ( 3(2), 3(1)) | X | (1,0) | Z | ( 4(1), 4(0)) |
Therefore, we can assume that the coordinates of the dilated triangle are the coordinates of the given triangle multiplied by the scale factor.