Expand menu menu_open Minimize Start chapters Home History history History expand_more
{{ item.displayTitle }}
navigate_next
No history yet!
Progress & Statistics equalizer Progress expand_more
Student
navigate_next
Teacher
navigate_next
{{ filterOption.label }}
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
arrow_forward
No results
{{ searchError }}
search
menu_open
{{ courseTrack.displayTitle }}
{{ statistics.percent }}% Sign in to view progress
{{ printedBook.courseTrack.name }} {{ printedBook.name }}
search Use offline Tools apps
Login account_circle menu_open

Interpreting Quadratic Functions in Standard Form

Interpreting Quadratic Functions in Standard Form 1.21 - Solution

arrow_back Return to Interpreting Quadratic Functions in Standard Form

We have a quadratic function written in standard form. This kind of equation can give us a lot of information about the parabola by observing the values of and We see that for the given equation, and

value of the Vertex

Consider the point at which the curve of the parabola changes direction.

This point is the vertex of the parabola, and defines the axis of symmetry. If we want to calculate the value of this point, we can substitute the given values of and into the expression and simplify.
Simplify
The axis of symmetry is the vertical line through the vertex, and divides a parabola into two mirror images. Since every point on this line will have the same coordinate as the vertex, we can form its equation.

value of the Vertex

The point at which the graph of a parabola changes direction also defines the maximum or minimum point of the graph. Whether the parabola has a minimum or maximum is determined by the value of

Since the given value of is negative, the parabola has a maximum value at the vertex. To find this value, think of as a function of By substituting the value of the vertex into the given equation and simplifying, we will get the value of the vertex.

The Vertex

Given the standard form of a parabola, the coordinates of its vertex can be expressed in terms of and We've already calculated both of these values above, so we know that the vertex lies on the point

Finding the intercept

The intercept of a quadratic function written in standard form is given by the value of Therefore, the intercept is