Big Ideas Math: Modeling Real Life, Grade 8
BI
Big Ideas Math: Modeling Real Life, Grade 8 View details
3. Solving Systems of Linear Equations by Elimination
Continue to next subchapter

Exercise 28 Page 217

Are there any variables already isolated?

Solution: (0,1)
Method: See solution.

Practice makes perfect
Since the variable y in the first equation has a coefficient equal to 1, we can isolate it using the Properties of Equality.
y+5x=1 & (I) 5y-x=5 & (II)
y+5x-5x=1-5x 5y-x=5
y=1-5x 5y-x=5
Now that y is isolated, the easiest way to solve the system of equations is to use the Substitution Method. Let's substitute y=1-5x into the second equation.
y=1-5x 5y-x=5
y=1-5x 5( 1-5x)-x=5
â–Ľ
(II):Solve for x
y=1-5x 5(1)-5(5x)-x=5
y=1-5x 5-5(5x)-x=5
y=1-5x 5-25x-x=5
y=1-5x 5-25x-x-5=5-5
y=1-5x -26x=0
y=1-5x -26x/-26=0/-26
y=1-5x -26/-26 * x=0/-26
y=1-5x 26/26 * x=0/-26
y=1-5x 1 * x=0/-26
y=1-5x x=0/-26
y=1-5x x=-0/26

(II): 0/a=0

y=1-5x x=0
Now we can solve for y by substituting the value of x into either equation and simplifying.
y=1-5x x=0
y=1-5( 0) x=0
â–Ľ
(I):Solve for y
y=1-0 x=0
y=1 x=0
The solution, or point of intersection, of the system of equations is (0,1).