1. Conditional Statements
Sign In
A conditional statement is only false when a true hypothesis produces a false conclusion.
p | ~ q | p → ~ q | ~(p → ~ q) |
---|---|---|---|
T | F | F | T |
T | T | T | F |
F | F | T | F |
F | T | T | F |
Let's remind ourselves of the truth table of a conditional statement.
p | q | p→ q |
---|---|---|
T | T | T |
T | F | F |
F | T | T |
F | F | T |
To create our truth table for ~ (p→ ~ q), we first have to negate q. The truth value of a negation is the opposite of the truth value of the original statement.
q | ~ q |
---|---|
T | F |
F | T |
T | F |
F | T |
Note that a conditional statement is only false when a true hypothesis produces a false conclusion. Also, to get ~(p→ ~ q) means negating the truth value of p→ ~ q. With this, we can create our truth table.
p | ~ q | p → ~ q | ~( p → ~ q) |
---|---|---|---|
T | F | F | T |
T | T | T | F |
F | F | T | F |
F | T | T | F |