Sign In
Use the fact that i^4-(i-1)^4=4i^3-6i^2+4i-1.
∑_(i=1)^ni^3=[n(n+1)/2]^2
∑_(i=1)^n(i^4-(i-1)^4)=∑_(i=1)^n(4i^3-6i^2+4i-1)
Let's first simplify the left hand-side of the equation. ∑_(i=1)^n( i^4- (i-1)^4) = & 1^4- 0^4 [-0.6em] & + 2^4-1^4 & + 3^4-2^4 & ... ... & + n^4-(n-1)^4 ∑_(i=1)^n(i^4-(i-1)^4) = & n^4 The left hand-side of the equation is equal to n^4. ∑_(i=1)^n(i^4-(i-1)^4)& =∑_(i=1)^n(4i^3-6i^2+4i-1) n^4 & =∑_(i=1)^n(4i^3-6i^2+4i-1)
Distribute ∑_(i=1)^n
Multiply
Multiply parentheses
Add terms
Distribute - n
Distribute 2n
Add and subtract terms
LHS+2n^3=RHS+2n^3
LHS+n^2=RHS+n^2
Factor out n^2
a^2+2ab+b^2=(a+b)^2
.LHS /4.=.RHS /4.
Rearrange equation
LHS- i^4=RHS- i^4
LHS * (- 1)=RHS* (- 1)
Commutative Property of Addition