Big Ideas Math Algebra 2, 2014
BI
Big Ideas Math Algebra 2, 2014 View details
1. Defining and Using Sequences and Series
Continue to next subchapter

Exercise 60 Page 416

Use the fact that i^4-(i-1)^4=4i^3-6i^2+4i-1.

∑_(i=1)^ni^3=[n(n+1)/2]^2

Practice makes perfect
We want to find a formula for the sum of the cubes of the first n positive integers. 1^3+2^3+3^3+ ...+(n-1)^3+n^3 ⇕ ∑_(i=1)^n i^3 To do so, we will use the following to write an equation that contains the sum, ∑_(i=1)^n i^3. i^4-(i-1)^4=4i^3-6i^2+4i-1 We sum both sides of the equation for the values of i from 1 to n.

∑_(i=1)^n(i^4-(i-1)^4)=∑_(i=1)^n(4i^3-6i^2+4i-1)

Simplifying the Left Hand-Side

Let's first simplify the left hand-side of the equation. ∑_(i=1)^n( i^4- (i-1)^4) = & 1^4- 0^4 [-0.6em] & + 2^4-1^4 & + 3^4-2^4 & ... ... & + n^4-(n-1)^4 ∑_(i=1)^n(i^4-(i-1)^4) = & n^4 The left hand-side of the equation is equal to n^4. ∑_(i=1)^n(i^4-(i-1)^4)& =∑_(i=1)^n(4i^3-6i^2+4i-1) n^4 & =∑_(i=1)^n(4i^3-6i^2+4i-1)

Simplifying the Right Hand-Side

Now, we will use the properties of summation notation and the given formulas to find an equivalent expression for the right hand-side of the equation.
∑_(i=1)^n(4i^3-6i^2+4i-1)
∑_(i=1)^n 4i^3-∑_(i=1)^n6i^2+∑_(i=1)^n4i-∑_(i=1)^n1
Factor out 4, 6, & 4
4∑_(i=1)^n i^3-∑_(i=1)^n6i^2+∑_(i=1)^n4i-∑_(i=1)^n1
4∑_(i=1)^n i^3-6∑_(i=1)^ni^2∑_(i=1)^n4i-∑_(i=1)^n1
4∑_(i=1)^n i^3-6∑_(i=1)^ni^2+4∑_(i=1)^ni-∑_(i=1)^n1
Let's substitute the formulas.
We will now simplify this expression.
4∑_(i=1)^n i^3-6n(n+1)(2n+1)/6+4n(n+1)/2-n
Simplify
4∑_(i=1)^n i^3-n(n+1)(2n+1)+2n(n+1)-n
4∑_(i=1)^n i^3-n(2n^2+2n+n+1)+2n(n+1)-n
4∑_(i=1)^n i^3-n(2n^2+3n+1)+2n(n+1)-n
4∑_(i=1)^n i^3-2n^3-3n^2-n+2n(n+1)-n
4∑_(i=1)^n i^3-2n^3-3n^2-n+2n^2+2n-n
4∑_(i=1)^n i^3-2n^3-n^2
We have simplified the right hand-side of the equation. Let's review what we have done so far. ∑_(i=1)^n(i^4-(i-1)^4)& =∑_(i=1)^n(4i^3-6i^2+4i-1) n^4 & =∑_(i=1)^n(4i^3-6i^2+4i-1) n^4 & =4∑_(i=1)^n i^3-2n^3-n^2 Finally, we will isolate the summation notation, which represents the sum of the cubes of the first n positive integers.
n^4 =4∑_(i=1)^n i^3-2n^3-n^2
Solve for ∑_(i=1)^n i^3
n^4 +2n^3 =4∑_(i=1)^n i^3-n^2
n^4+2n^3+n^2=4∑_(i=1)^n i^3
n^2(n^2+2n+1)=4∑_(i=1)^n i^3
n^2(n+1)^2=4∑_(i=1)^n i^3
n^2(n+1)^2/4=∑_(i=1)^n i^3
∑_(i=1)^n i^3=n^2(n+1)^2/4
Rewrite n^2(n+1)^24 as [ n(n+1)2]^2
∑_(i=1)^n i^3=[n(n+1)]^2/4

a^m/b^m=(a/b)^m

∑_(i=1)^n i^3=[n(n+1)/2]^2
As a result, the sum of the cubes of the first n positive integers is found by the formula [ n(n+1)2]^2. ∑_(i=1)^n i^3=[n(n+1)/2]^2

Extra

Showing i^4-(i-1)^4=4i^3-6i^2+4i-1
Using the binomial expansion of (i-1)^4, we can write the equation in the hint. (i-1)^4=i^4-4i^3+6i^2-4i+1 Let's rearrange the equation.
(i-1)^4=i^4-4i^3+6i^2-4i+1
Rewrite
(i-1)^4-i^4=-4i^3+6i^2-4i+1
- (i-1)^4+i^4=4i^3-6i^2+4i-1
i^4-(i-1)^4=4i^3-6i^2+4i-1