Big Ideas Math Algebra 2, 2014
BI
Big Ideas Math Algebra 2, 2014 View details
1. Defining and Using Sequences and Series
Continue to next subchapter

Exercise 48 Page 415

Recall the formula ∑_(i=1)^n i = n(n+1)/2.

136

Practice makes perfect
Let's start by recalling the formula for this special series. Sum of firstn positive integers ∑_(i=1)^n i = n(n+1)/2Let's now consider the given series. ∑_(n=1)^(16) n Here we have that n=16. Therefore, to find the desired sum we will substitute 16 for n in the corresponding formula.
∑_(i=1)^n i = n(n+1)/2
∑_(i=1)^(16) i = 16( 16+1)/2
Evaluate right-hand side
∑_(i=1)^(16) i = 16(17)/2
∑_(i=1)^(16) i = 2* 8(17)/2
∑_(i=1)^(16) i = 2* 8(17)/2
∑_(i=1)^(16) i = 8(17)
∑_(i=1)^(16) i = 136