Pearson Algebra 1 Common Core, 2011
PA
Pearson Algebra 1 Common Core, 2011 View details
Chapter Review
Continue to next subchapter

Exercise 28 Page 654

The Multiplication Property of Square Roots tells us that sqrt(ab)=sqrt(a) * sqrt(b), for a≥ 0 and b≥ 0.

30t^4sqrt(3)

Practice makes perfect
We want to simplify a radical expression. 6 sqrt(5t^3) * sqrt(15 t^5) Let's recall the Multiplication Property of Square Roots. sqrt(ab)=sqrt(a) * sqrt(b), for a≥ 0,b≥ 0 Let's use this property for our expression.
6 sqrt(5t^3) * sqrt(15 t^5)
6 sqrt(5* t* t^2) * sqrt(5* 3* t* t^2 * t^2)
6 sqrt(5) * sqrt(t) * sqrt(t^2) * sqrt(5) * sqrt(3) * sqrt(t) * sqrt(t^2) * sqrt(t^2)
Now that we have simplified the factors as much as possible, we can use the Commutative Property of Multiplication to simplify even further.
6 sqrt(5) * sqrt(t) * sqrt(t^2) * sqrt(5) * sqrt(3) * sqrt(t) * sqrt(t^2) * sqrt(t^2)
6sqrt(5) * sqrt(5) * sqrt(t) * sqrt(t) * sqrt(t^2) * sqrt(t^2) * sqrt(t^2) * sqrt(3)
6* 5* t*sqrt(t^2)*sqrt(t^2)*sqrt(t^2)*sqrt(3)
6 * 5 * t* t* t* t* sqrt(3)

a* ... * a_(n times) = a^n

6* 5 t^4 sqrt(3)
30t^4 sqrt(3)