McGraw Hill Integrated II, 2012
MH
McGraw Hill Integrated II, 2012 View details
Get Ready for the Chapter
Continue to next subchapter

Exercise 6 Page 617

- 4sqrt(2)+8/3

Practice makes perfect
Consider the given expression. 8sqrt(2)/6-3sqrt(8)

To simplify it, we need to rationalize the denominator. To do so, we have to multiply the numerator and denominator of the fraction by the conjugate of the denominator. We find the conjugate by changing the sign of the second term of the expression.

Binomial Conjugate
a + b a - b
a - b a + b
In this case, the conjugate of the denominator is 6 + 3sqrt(8). Let's rationalize the denominator and then simplify the expression.
8sqrt(2)/6-3sqrt(8)
8sqrt(2)(6+3sqrt(8))/(6-3sqrt(8))(6+3sqrt(8))
Multiply parentheses
48sqrt(2)+24sqrt(2)sqrt(8)/(6-3sqrt(8))(6+3sqrt(8))
48sqrt(2)+24sqrt(16)/(6-3sqrt(8))(6+3sqrt(8))
48sqrt(2)+24 * 4/(6-3sqrt(8))(6+3sqrt(8))
48sqrt(2)+96/(6-3sqrt(8))(6+3sqrt(8))

(a-b)(a+b)=a^2-b^2

48sqrt(2)+96/6^2-(3sqrt(8))^2
Simplify denominator
48sqrt(2)+96/6^2-3^2(sqrt(8))^2
48sqrt(2)+96/36-9(sqrt(8))^2
48sqrt(2)+96/36-9 * 8
48sqrt(2)+96/36-72
48sqrt(2)+96/- 36
12(4sqrt(2)+8)/- 36
4sqrt(2)+8/- 3
- 4sqrt(2)+8/3