5. Inequalities Involving Absolute Value
Sign In
Point | f(x)≥ x-1 | True/False | f(x)≤ x-1 | True/False |
---|---|---|---|---|
(-4,2) | f(-4)≥ -4-1 | true | f(-4)≤ -4-1 | false |
(-2,2) | f(-2)≥ -2-1 | true | f(-2)≤ -2-1 | false |
(0,2) | f(0)≥ 0-1 | true | f(0)≤ 0-1 | false |
(2,2) | f(2)≥ 2-1 | true | f(2)≤ 2-1 | false |
(4,2) | f(4)≥ 4-1 | false | f(4)≤ 4-1 | true |
Table:
Point | f(x)≥ x-1 | True/False | f(x)≤ x-1 | True/False |
---|---|---|---|---|
(-4,2) | f(-4)≥ -4-1 | true | f(-4)≤ -4-1 | false |
(-2,2) | f(-2)≥ -2-1 | true | f(-2)≤ -2-1 | false |
(0,2) | f(0)≥ 0-1 | true | f(0)≤ 0-1 | false |
(2,2) | f(2)≥ 2-1 | true | f(2)≤ 2-1 | false |
(4,2) | f(4)≥ 4-1 | false | f(4)≤ 4-1 | true |
(1,1) | f(1)≥ 1-1 | true | f(1)≤ 1-1 | false |
(1,-1) | f(1)≥ 1-1 | false | f(1)≤ 1-1 | true |
(1,0) | f(1)≥ 1-1 | true | f(1)≤ 1-1 | true |
Point | f(x)≥ x-1 | True/False | f(x)≤ x-1 | True/False |
---|---|---|---|---|
(-4,2) | f(-4)≥ -4-1 | true | f(-4)≤ -4-1 | false |
(-2,2) | f(-2)≥ -2-1 | true | f(-2)≤ -2-1 | false |
(0,2) | f(0)≥ 0-1 | true | f(0)≤ 0-1 | false |
(2,2) | f(2)≥ 2-1 | true | f(2)≤ 2-1 | false |
(4,2) | f(4)≥ 4-1 | false | f(4)≤ 4-1 | true |
f(x) & = mx + b f(x) &= 1 x + ( - 1) In this case, the slope of the function is 1 and the y-intercept is -1. We will plot the y-intercept and find a second point in order to draw the line.
Now, we will connect the two points and draw the line.
Let's check three points: one above the line, one below the line, and one on the line.
Point | f(x)≥ x-1 | True/False | f(x)≤ x-1 | True/False |
---|---|---|---|---|
(-4,2) | f(-4)≥ -4-1 | true | f(-4)≤ -4-1 | false |
(-2,2) | f(-2)≥ -2-1 | true | f(-2)≤ -2-1 | false |
(0,2) | f(0)≥ 0-1 | true | f(0)≤ 0-1 | false |
(2,2) | f(2)≥ 2-1 | true | f(2)≤ 2-1 | false |
(4,2) | f(4)≥ 4-1 | false | f(4)≤ 4-1 | true |
(1,1) | f(1)≥ 1-1 | true | f(1)≤ 1-1 | false |
(1,-1) | f(1)≥ 1-1 | false | f(1)≤ 1-1 | true |
(1,0) | f(1)≥ 1-1 | true | f(1)≤ 1-1 | true |
As we can see, (1,1) satisfies f(x)≥ x-1, (1,-1) satisfies f(x)≤ x-1, and (1,0) satisfies both.