{{ tocSubheader }}
| {{ 'ml-lesson-number-slides' | message : article.intro.bblockCount }} |
| {{ 'ml-lesson-number-exercises' | message : article.intro.exerciseCount }} |
| {{ 'ml-lesson-time-estimation' | message }} |
Operations | |
---|---|
Name | Property |
Distributive Property | a⋅(a+c)=a⋅b+a⋅c |
Commutative Property of Addition | a+b=b+a |
Commutative Property of Multiplication | a⋅b=b⋅a |
Associative Property of Addition | (a+b)+c=a+(b+c) |
Associative Property of Multiplication | (a⋅b)⋅c=a⋅(b⋅c) |
Identities | |
---|---|
Name | Property |
Additive Identity | a+0=0 |
Multiplicative Identity | a⋅1=a |
Equalities | |
---|---|
Name | Property |
Addition Property of Equality | If a=b, then a+c=b+c |
Subtraction Property of Equality | If a=b, then a−c=b−c |
Multiplication Property of Equality | If a=b, then a⋅c=b⋅c |
Division Property of Equality | If a=b, then ca=cb |
Reflexive Property of Equality | Any real number is equal to itself |
Symmetric Property of Equality | If a=b, then b=a |
Transitive Property of Equality | If a=b and b=c, then a=c |
Closure Property of Real Numbers | |
---|---|
∀ a,b∈R⇒a+b∈R | Closed Under Addition |
∀ a,b∈R⇒a−b∈R | Closed Under Subtraction |
∀ a,b∈R⇒a⋅b∈R | Closed Under Multiplication |
∀ a,b∈R⇒a÷b∈/R | Not Closed Under Division |