The multiplicative identity, also known as the identity element, is multiplied against every element of a group, and those elements remain unchanged. For example, when considering real numbers, the identity element is 1.
7⋅143⋅1=7=432.36⋅1π⋅1=2.36=π
The exception to this identity is 0 since 0⋅1=0. Therefore, it is excluded when dealing with the identity of real numbers.