Sign In
Perimeter A'B'C'D'E': 56
Area ABCDE: 52
Area A'B'C'D'E': 208
To enlarge the polygon by a factor of 2, we have to double the distance between each vertex and the origin in the same direction. We can do this if we multiply each point's coordinates by 2.
Original point | (x,y) | (2x,2y) |
---|---|---|
A | (- 3,- 2) | (- 6,- 4) |
B | (5,- 2) | (10,- 4) |
C | (5,3) | (10,6) |
D | (1,6) | (2,12) |
E | (- 3,3) | (- 6,6) |
With this information we can plot the dilated polygon.
Points | sqrt((x_2-x_1)^2+(y_2-y_1)^2) | d |
---|---|---|
D( 1,6), E( - 3,3) | sqrt(( 1-( - 3))^2+( 6- 3)^2) | 5 |
C( 5,3), E( 1,6) | sqrt(( 5- 1)^2+( 3- 6)^2) | 5 |
D'( 2,12), E'( - 6,6) | sqrt(( 2-( - 6))^2+( 12- 6)^2) | 10 |
C'( 10,6), E'( 2,12) | sqrt(( 10- 2)^2+( 6- 12)^2) | 10 |
Let's mark the last side's length in the diagram.
Now we have enough information to calculate the perimeter of the polygons. ABCDE:& 8+5+5+5+5=28 A'B'C'D'E':& 16+10+10+10+10=56 To find the area of the polygons, we will divide them into a rectangle and a triangle. Note that the area of a triangle is half its base times its height. Therefore, we will also mark the triangle heights.
Now we have enough information to calculate the area of the polygons. ABCDE:& (8)(5)+1/2(8)(3)=52 A'B'C'D'E':& (10)(16)+1/2(16)(6)=208