Sign In
m∠ ABE = 80^(∘)
m∠ EBC = 60^(∘)
m∠ BCE = 40^(∘)
m∠ ECD = 40^(∘)
m∠ D = 60^(∘)
m∠ DEC = 40^(∘)
m∠ CEB = 80^(∘)
m∠ BEA = 60^(∘)
Having found these angles, we can identify two pairs of same-side interior angles — one pair with respect to CE and another with respect to BE. Since BC ∥ AD, we know that these are congruent by the Same-Side Interior Angles Theorem.
For each of the three triangles we can identify in the trapezoid, we know two angles. With this information by the Triangle Angle Sum Theorem we can identify the third angle. & △ ABE & m∠ B+60^(∘)+40^(∘)=180^(∘) ⇔ m∠ B=80^(∘) [1em] & △ BEC & m∠ E+60^(∘)+40^(∘)=180^(∘) ⇔ m∠ E=80^(∘) [1em] & △ CDE & m∠ C+60^(∘)+40^(∘)=180^(∘) ⇔ m∠ C=80^(∘) Let's complete the diagram with these angles.
Finally, we will summarize the angle measures. m∠ A = 40^(∘) m∠ ABE = 80^(∘) m∠ EBC = 60^(∘) m∠ BCE = 40^(∘) m∠ ECD = 40^(∘) m∠ D = 60^(∘) m∠ DEC = 40^(∘) m∠ CEB = 80^(∘) m∠ BEA = 60^(∘)
Substitute values
Add terms