Sign In
R''(2,1), S''(-1,7), T''(2,7)
Our triangle has the following vertices. R(-7, -5), S(-1, -2), T(-1, -5) We first rotate this triangle by 90^(∘) counterclockwise about the origin and then we translate it 3 units left and 8 units up. We want to find the coordinates of the vertices after these transformations. Let's consider each transformation one at a time.
ccc Original Coordinate && Image Coordinate [0.5em] ( x, y) & → & ( - y, x) We can find the coordinates of the rotated triangle using this rule with the given points.
(x, y) | (- y, x) | Simplify |
---|---|---|
R( -7, -5) | R'( -( -5), -7) | R'(5, -7) |
S( -1, -2) | S'( -( -2), -1) | S'(2, -1) |
T( -1, -5) | T'( -( -5), -1) | T'(5, -1) |
After the rotation, we translate the figure 3 units left and 8 units up. In this transformation the x-coordinate decreases by 3 and the y-coordinate increases by 8. ccc Original Coordinate && Image Coordinate [0.5em] ( x, y) & → & ( x - 3, y + 8) Let's apply this transformation to the vertices of the rotated triangle.
(x, y) | (x-3, y+8) | Simplify |
---|---|---|
R'( 5, -7) | R''( 5 - 3, -7 + 8) | R''(2,1) |
S'( 2, -1) | S''( 2 - 3, -1 + 8) | S''(-1,7) |
T'( 5, -1) | T''( 5 - 3, -1 + 8) | T''(2,7) |